Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contact Us
  • Send Feedback
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of RIUBUCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Compartir

    View Item 
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Untitled
    • View Item
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Untitled
    • View Item

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/10288

    Título
    DMCEN a MATLAB function to evaluate the entropy improvement provided by a multivariate k-class-model
    Autor
    Sánchez Pastor, Mª SagrarioUBU authority Orcid
    Valencia García, OlgaUBU authority Orcid
    Ruiz Miguel, SantiagoUBU authority Orcid
    Ortiz Fernández, Mª CruzUBU authority Orcid
    Sarabia Peinador, Luis AntonioUBU authority Orcid
    Fecha de publicación
    2022-05-25
    Descripción
    El software es una función de MATLAB que calcula un indicador del rendimiento de un modelado de k clases
    Abstract
    The dmcen.m function allows to compute the Diagonal Modified Confusion Entropy (DMCEN), which assess the performance of class-models jointly computed for k classes. DMCEN is a versatile index regarding sensitivity (capability of each class-model to contain its own objects) and specificity (capability of the each class-model to reject foreign objects). DMCEN develops the idea that a classification model introduces an order in the objects of a dataset, capable of being measured by the decrease in entropy that it entails. A detailed description of the algorithm and its properties for evaluating a k-class-model with respect to other indexes can be seen at: O. Valencia M.C. Ortiz, M.S. Sánchez, L.A. Sarabia, A modified entropy-based performance criterion for class-modelling with multiple classes. Chemometrics and Intelligent Laboratory Systems 217 (2021) 104423. https://doi.org/10.1016/j.chemolab.2021.104423
    Palabras clave
    Entropía
    Modelado de clases
    Indicador de rendimiento
    Materia
    Algoritmos computacionales
    Computer algorithms
    URI
    http://hdl.handle.net/10259/10288
    Versión del editor
    https://www.mathworks.com/matlabcentral/fileexchange/112175-dmcen
    Collections
    • Untitled
    Files in this item
    Nombre:
    readme.txt
    Tamaño:
    1.958Kb
    Formato:
    Text
    Thumbnail
    FilesOpen
    Nombre:
    dmcen.m
    Tamaño:
    1.577Kb
    Formato:
    Unknown
    Thumbnail
    FilesOpen

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Show full item record