Zur Kurzanzeige

dc.contributor.authorLi, Zheng
dc.contributor.authorRuiz Fernández, Virginia 
dc.contributor.authorMishukova, Viktoriia
dc.contributor.authorWan, Qiansu
dc.contributor.authorLiu, Haomin
dc.contributor.authorXue, Han
dc.contributor.authorGao, Ying
dc.contributor.authorCao, Gaolong
dc.contributor.authorLi, Yuanyuan
dc.contributor.authorZhuang, Xiaodong
dc.contributor.authorWeissenrieder, Jonas
dc.contributor.authorCheng, Shi
dc.contributor.authorLi, Jiantong
dc.date.accessioned2025-03-11T07:54:18Z
dc.date.available2025-03-11T07:54:18Z
dc.date.issued2021-10
dc.identifier.issn1616-301X
dc.identifier.urihttp://hdl.handle.net/10259/10300
dc.description.abstractOn-paper microsupercapacitors (MSCs) are a key energy storage component for disposable electronics that are anticipated to essentially address the increasing global concern of electronic waste. However, nearly none of the present on-paper MSCs combine eco-friendliness with high electrochemical performance (especially the rate capacity). In this work, highly reliable conductive inks based on the ternary composite of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS), graphene quantum dots and graphene are developed for scalable inkjet printing of compact (footprint area ≈ 20 mm2) disposable MSCs on commercial paper substrates. Without any post treatment, the printed patterns attain a sheet resistance as low as 4 Ω ▫−1. The metal-free all-solid-state MSCs exhibit a maximum areal capacitance > 2 mF cm−2 at a high scan rate of 1000 mV s−1, long cycle life (>95% capacitance retention after 10 000 cycles), excellent flexibility, and long service time. Remarkably, the “totally metal-free” MSC arrays are fully inkjet printed on paper substrates and also exhibit high rate performance. The life cycle assessment indicates that these printed devices have much lower eco-toxicity and global warming potential than other on-paper MSCs.en
dc.description.sponsorshipThe authors acknowledge the financial support from the FormasFoundation through the Future Research Leaders Grant (No. 2016-00496), the ÅForsk Foundation (Grant No. 17-352), the SwedishResearch Council (Grant No. 2019-04731), the Olle Engkvist ByggmästareFoundation (Grant No. 2014/799), and the Swedish Foundation forInternational Cooperation in Research and Higher Education (STINT,CH2017-7284).en
dc.format.mimetypeapplication/pdf
dc.language.isoenges
dc.publisherWileyes
dc.relation.ispartofAdvanced Funcrional Materials. 2021, V. 32, n. 1, p. 2108773es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDisposable electronicsen
dc.subjectElectrochemically exfoliated grapheneen
dc.subjectGraphene quantum dotsen
dc.subjectInkjet printingen
dc.subjectOn-paper microsupercapacitorsen
dc.subjectPEDOT:PSSen
dc.subject.otherElectroquímicaes
dc.subject.otherElectrochemistryen
dc.subject.otherElectrotecniaes
dc.subject.otherElectrical engineeringen
dc.titleInkjet Printed Disposable High‐Rate On‐Paper Microsupercapacitorsen
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.relation.publisherversionhttps://doi.org/10.1002/adfm.202108773es
dc.identifier.doi10.1002/adfm.202108773
dc.identifier.essn1616-3028
dc.journal.titleAdvanced Functional Materialses
dc.volume.number32es
dc.issue.number1es
dc.page.initial2108773es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige