Show simple item record

dc.contributor.authorLi, Zheng
dc.contributor.authorRuiz Fernández, Virginia 
dc.contributor.authorMishukova, Viktoriia
dc.contributor.authorWan, Qiansu
dc.contributor.authorLiu, Haomin
dc.contributor.authorXue, Han
dc.contributor.authorGao, Ying
dc.contributor.authorCao, Gaolong
dc.contributor.authorLi, Yuanyuan
dc.contributor.authorZhuang, Xiaodong
dc.contributor.authorWeissenrieder, Jonas
dc.contributor.authorCheng, Shi
dc.contributor.authorLi, Jiantong
dc.date.accessioned2025-03-11T07:54:18Z
dc.date.available2025-03-11T07:54:18Z
dc.date.issued2021-10
dc.identifier.issn1616-301X
dc.identifier.urihttp://hdl.handle.net/10259/10300
dc.description.abstractOn-paper microsupercapacitors (MSCs) are a key energy storage component for disposable electronics that are anticipated to essentially address the increasing global concern of electronic waste. However, nearly none of the present on-paper MSCs combine eco-friendliness with high electrochemical performance (especially the rate capacity). In this work, highly reliable conductive inks based on the ternary composite of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS), graphene quantum dots and graphene are developed for scalable inkjet printing of compact (footprint area ≈ 20 mm2) disposable MSCs on commercial paper substrates. Without any post treatment, the printed patterns attain a sheet resistance as low as 4 Ω ▫−1. The metal-free all-solid-state MSCs exhibit a maximum areal capacitance > 2 mF cm−2 at a high scan rate of 1000 mV s−1, long cycle life (>95% capacitance retention after 10 000 cycles), excellent flexibility, and long service time. Remarkably, the “totally metal-free” MSC arrays are fully inkjet printed on paper substrates and also exhibit high rate performance. The life cycle assessment indicates that these printed devices have much lower eco-toxicity and global warming potential than other on-paper MSCs.en
dc.description.sponsorshipThe authors acknowledge the financial support from the FormasFoundation through the Future Research Leaders Grant (No. 2016-00496), the ÅForsk Foundation (Grant No. 17-352), the SwedishResearch Council (Grant No. 2019-04731), the Olle Engkvist ByggmästareFoundation (Grant No. 2014/799), and the Swedish Foundation forInternational Cooperation in Research and Higher Education (STINT,CH2017-7284).en
dc.format.mimetypeapplication/pdf
dc.language.isoenges
dc.publisherWileyes
dc.relation.ispartofAdvanced Funcrional Materials. 2021, V. 32, n. 1, p. 2108773es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDisposable electronicsen
dc.subjectElectrochemically exfoliated grapheneen
dc.subjectGraphene quantum dotsen
dc.subjectInkjet printingen
dc.subjectOn-paper microsupercapacitorsen
dc.subjectPEDOT:PSSen
dc.subject.otherElectroquímicaes
dc.subject.otherElectrochemistryen
dc.subject.otherElectrotecniaes
dc.subject.otherElectrical engineeringen
dc.titleInkjet Printed Disposable High‐Rate On‐Paper Microsupercapacitorsen
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.relation.publisherversionhttps://doi.org/10.1002/adfm.202108773es
dc.identifier.doi10.1002/adfm.202108773
dc.identifier.essn1616-3028
dc.journal.titleAdvanced Functional Materialses
dc.volume.number32es
dc.issue.number1es
dc.page.initial2108773es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record