Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contact Us
  • Send Feedback
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of RIUBUCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Compartir

    View Item 
    •   RIUBU Home
    • E-Prints and Research Data
    • Untitled
    • Untitled
    • Artículos GICAP
    • View Item
    •   RIUBU Home
    • E-Prints and Research Data
    • Untitled
    • Untitled
    • Artículos GICAP
    • View Item

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/3862

    Título
    Unsupervised neural models for country and political risk analysis
    Autor
    Herrero Cosío, ÁlvaroUBU authority Orcid
    Corchado, EmilioUBU authority Orcid
    Jiménez Palmero, AlfredoUBU authority
    Publicado en
    Expert Systems with Applications. V. 38, n. 11, p. 13641–1366
    Editorial
    Elsevier
    Fecha de publicación
    2011-10
    ISSN
    0957-4174
    DOI
    10.1016/j.eswa.2011.04.136
    Abstract
    This interdisciplinary research project focuses on relevant applications of Knowledge Discovery and Artificial Neural Networks in order to identify and analyze levels of country, business and political risk. Its main goal is to help business decision-makers understand the dynamics within the emerging market countries in which they operate. Most of the neural models applied in this study are defined within the framework of unsupervised learning. They are based on Exploratory Projection Pursuit, Topology Preserving Maps and Curvilinear Component Analysis. Two interesting real data sets are analyzed to empirically probe the robustness of these models. The first case study describes information from a significant sample of Spanish multinational enterprises (MNEs). It analyses data pertaining to such aspects as decisions over the location of subsidiary enterprises in various regions across the world, the importance accorded to such decisions and the driving forces behind them. Through a projection-based analysis, this study reveals a range of different reasons underlying the internationalization strategies of Spanish MNEs and the different goals they pursue. It may be concluded that projection connectionist techniques are of immense assistance in the process of identifying the internationalization strategies of Spanish MNEs, their underlying motives and the goals they pursue. The second case study covers several risk categories that include task policy, security, and political stability among others, and it tracks the scores of different countries all over the world. Interesting conclusions are drawn from the application of several business intelligence solutions based on neural projection models, which support data analysis in the context of country and political risk analysis
    Palabras clave
    Neural visualization models
    Exploratory Projection Pursuit
    Unsupervised learning
    Country and political risk
    Business intelligence
    Knowledge extraction
    Materia
    Computer science
    Informática
    URI
    http://hdl.handle.net/10259/3862
    Versión del editor
    http://dx.doi.org/10.1016/j.eswa.2011.04.136
    Collections
    • Artículos GICAP
    Files in this item
    Nombre:
    Herrero-ESA_2011.pdf
    Tamaño:
    873.1Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Show full item record

    Universidad de Burgos

    Powered by MIT's. DSpace software, Version 5.10