Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contactez-nous
  • Faire parvenir un commentaire
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout RIUBUCommunautés & CollectionsPar date de publicationAuteursTitresSujetsCette collectionPar date de publicationAuteursTitresSujets

    Mon compte

    Ouvrir une sessionS'inscrire

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de RIUBU
    • E-Prints
    • Untitled
    • Untitled
    • Untitled
    • Voir le document
    •   Accueil de RIUBU
    • E-Prints
    • Untitled
    • Untitled
    • Untitled
    • Voir le document

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/3928

    Título
    Direct quality prediction in resistance spot welding process: Sensitivity, specificity and predictive accuracy comparative analysis
    Autor
    Pereda, María
    Santos Martín, José IgnacioAutoridad UBU Orcid
    Martín, Óscar
    Galán Ordax, José ManuelAutoridad UBU Orcid
    Publicado en
    Science and technology of welding and joining. 2015, V. 20, n. 8, p. 679-685
    Editorial
    Maney Publishing
    Fecha de publicación
    2015-11
    ISSN
    1362-1718
    DOI
    10.1179/1362171815Y.0000000052
    Résumé
    In this work, several of the most popular and state-of-the-art classification methods are compared as pattern recognition tools for classification of resistance spot welding joints. Instead of using the result of a non-destructive testing technique as input variables, classifiers are trained directly with the relevant welding parameters, i.e. welding current, welding time and the type of electrode (electrode material and treatment). The algorithms are compared in terms of accuracy and area under the receiver operating characteristic (ROC) curve metrics, using nested cross-validation. Results show that although there is not a dominant classifier for every specificity/sensitivity requirement, support vector machines using radial kernel, boosting and random forest techniques obtain the best performance overall
    Palabras clave
    Resistance spot welding
    Classification
    Pattern recognition
    Quality control
    Support vector machines
    Random forest
    Artificial neural networks
    Materia
    Gestión de empresas
    Industrial management
    URI
    http://hdl.handle.net/10259/3928
    Versión del editor
    http://www.tandfonline.com/doi/full/10.1179/1362171815Y.0000000052
    Aparece en las colecciones
    • Untitled
    Fichier(s) constituant ce document
    Nombre:
    Pereda-STWJ_2015.pdf
    Tamaño:
    487.1Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Afficher la notice complète