Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contactez-nous
  • Faire parvenir un commentaire
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout RIUBUCommunautés & CollectionsPar date de publicationAuteursTitresSujetsCette collectionPar date de publicationAuteursTitresSujets

    Mon compte

    Ouvrir une sessionS'inscrire

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de RIUBU
    • E-Prints
    • Untitled
    • Untitled
    • Artículos iAM
    • Voir le document
    •   Accueil de RIUBU
    • E-Prints
    • Untitled
    • Untitled
    • Artículos iAM
    • Voir le document

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/4270

    Título
    An SVM-Based classifier for estimating the state of various rotating components in agro-industrial machinery with a vibration signal acquired from a single point on the machine chassis
    Autor
    Ruiz González, RubénAutoridad UBU Orcid
    Gómez Gil, Jaime
    Gómez Gil, Francisco JavierAutoridad UBU Orcid
    Martínez-Martínez, Víctor
    Publicado en
    Sensors. 2014, V. 14, n. 1, p. 20713-20735
    Editorial
    MDPI
    Fecha de publicación
    2014-11
    ISSN
    1424-8220
    DOI
    10.3390/s141120713
    Résumé
    The goal of this article is to assess the feasibility of estimating the state of various rotating components in agro-industrial machinery by employing just one vibration signal acquired from a single point on the machine chassis. To do so, a Support Vector Machine (SVM)-based system is employed. Experimental tests evaluated this system by acquiring vibration data from a single point of an agricultural harvester, while varying several of its working conditions. The whole process included two major steps. Initially, the vibration data were preprocessed through twelve feature extraction algorithms, after which the Exhaustive Search method selected the most suitable features. Secondly, the SVM-based system accuracy was evaluated by using Leave-One-Out cross-validation, with the selected features as the input data. The results of this study provide evidence that (i) accurate estimation of the status of various rotating components in agro-industrial machinery is possible by processing the vibration signal acquired from a single point on the machine structure; (ii) the vibration signal can be acquired with a uniaxial accelerometer, the orientation of which does not significantly affect the classification accuracy; and, (iii) when using an SVM classifier, an 85% mean cross-validation accuracy can be reached, which only requires a maximum of seven features as its input, and no significant improvements are noted between the use of either nonlinear or linear kernels.
    Palabras clave
    Support Vector Machine (SVM)
    Predictive maintenance (PdM)
    Agricultural machinery
    Condition monitoring
    Fault diagnosis
    Vibration analysis
    Feature extraction and selection
    Pattern recognition
    Materia
    Vehículos
    Vehicles
    Máquinas
    Machinery
    URI
    http://hdl.handle.net/10259/4270
    Versión del editor
    http://dx.doi.org/10.3390/s141120713
    Aparece en las colecciones
    • Artículos iAM
    Attribution 4.0 International
    Documento(s) sujeto(s) a una licencia Creative Commons Attribution 4.0 International
    Fichier(s) constituant ce document
    Nombre:
    Ruiz-Sensors_2014.pdf
    Tamaño:
    1.070Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Afficher la notice complète