Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contattaci
  • Manda Feedback
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto RIUBUArchivi & CollezioniData di pubblicazioneAutoriTitoliSoggettiQuesta CollezioneData di pubblicazioneAutoriTitoliSoggetti

    My Account

    LoginRegistrazione

    Statistiche

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Untitled
    • Mostra Item
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Untitled
    • Mostra Item

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/5002

    Título
    Hunter–gatherer mobility and technological landscapes in southernmost South America: a statistical learning approach
    Autor
    Briz i Godino, Ivan
    Ahedo García, VirginiaAutoridad UBU Orcid
    Álvarez, Myrian
    Pal, Nélida .
    Turnes, Lucas .
    Santos Martín, José IgnacioAutoridad UBU Orcid
    Zurro, Débora
    Caro Saiz, Jorge
    Galán Ordax, José ManuelAutoridad UBU Orcid
    Publicado en
    Royal Society Open Science. 2018, V. 5, n. 10, 180906
    Editorial
    The Royal Society
    Fecha de publicación
    2018-10
    ISSN
    2054-5703
    DOI
    10.1098/rsos.180906
    Abstract
    The present work aims to quantitatively explore and understand the relationship between mobility types (nautical versus pedestrian), specific technological traits and shared technological knowledge in pedestrian hunter–gatherer and nautical hunter–fisher–gatherer societies from the southernmost portion of South America. To that end, advanced statistical learning techniques are used: state-of-the-art classification algorithms and variable importance analyses. Results show a strong relationship between technological knowledge, traits and mobility types. Occupations can be accurately classified into nautical and pedestrian due to the existence of a non-trivial pattern between mobility and a relatively small fraction of variables from some specific technological categories. Cases where the best-fitted classification algorithm fails to generalize are found significantly interesting. These instances can unveil lack of information, not enough entries in the training set, singular features or ambiguity, the latter case being a possible indicator of the interaction between nautical and pedestrian societies.
    Palabras clave
    Hunter–gatherer
    Statistical learning
    Shared technology
    Random forest
    Mobility
    Materia
    Transportes
    Transportation
    Sociología
    Sociology
    URI
    http://hdl.handle.net/10259/5002
    Versión del editor
    http://dx.doi.org/10.1098/rsos.180906
    Aparece en las colecciones
    • Untitled
    Attribution 4.0 International
    Documento(s) sujeto(s) a una licencia Creative Commons Attribution 4.0 International
    Files in questo item
    Nombre:
    Briz-rsos_2018.pdf
    Tamaño:
    1.302Mb
    Formato:
    Adobe PDF
    Thumbnail
    Mostra/Apri

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostra tutti i dati dell'item