Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contactez-nous
  • Faire parvenir un commentaire
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout RIUBUCommunautés & CollectionsPar date de publicationAuteursTitresSujetsCette collectionPar date de publicationAuteursTitresSujets

    Mon compte

    Ouvrir une sessionS'inscrire

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de RIUBU
    • E-Prints
    • Untitled
    • Untitled
    • Artículos ADMIRABLE
    • Voir le document
    •   Accueil de RIUBU
    • E-Prints
    • Untitled
    • Untitled
    • Artículos ADMIRABLE
    • Voir le document

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/5474

    Título
    High-accuracy classification of thread quality in tapping processes with ensembles of classifiers for imbalanced learning
    Autor
    Diez Pastor, José FranciscoAutoridad UBU Orcid
    Gil del Val, Alain
    Veiga, Fernando
    Bustillo Iglesias, AndrésAutoridad UBU Orcid
    Publicado en
    Measurement. 2021, V. 168, 108328
    Editorial
    Elsevier
    Fecha de publicación
    2021-01
    ISSN
    0263-2241
    DOI
    10.1016/j.measurement.2020.108328
    Résumé
    Industrial threading processes that use cutting taps are in high demand. However, industrial conditions differ markedly from laboratory conditions. In this study, a machine-learning solution is presented for the correct classification of threads, based on industrial requirements, to avoid expensive manual measurement of quality indicators. First, quality states are categorized. Second, process inputs are extracted from the torque signals including statistical parameters. Third, different machine-learning algorithms are tested: from base classifiers, such as decision trees and multilayer perceptrons, to complex ensembles of classifiers especially designed for imbalanced datasets, such as boosting and bagging decision-tree ensembles combined with SMOTE and under-sampling balancing techniques. Ensembles demonstrated the lowest sensitivity to window sizes, the highest accuracy for smaller window sizes, and the greatest learning ability with small datasets. Fourth, the combination of models with both high Recall and high Precision resulted in a reliable industrial tool, tested on an extensive experimental dataset.
    Palabras clave
    Bagging
    Imbalanced datasets
    Threading
    Cutting taps
    Quality assessment
    Materia
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/5474
    Versión del editor
    https://doi.org/10.1016/j.measurement.2020.108328
    Aparece en las colecciones
    • Untitled
    • Artículos ADMIRABLE
    Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Fichier(s) constituant ce document
    Nombre:
    Diez-measurement_2021.pdf
    Tamaño:
    1.685Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Afficher la notice complète