Zur Kurzanzeige

dc.contributor.authorGranados López, Diego 
dc.contributor.authorSuárez García, Andrés 
dc.contributor.authorDiez Mediavilla, Montserrat 
dc.contributor.authorAlonso Tristán, Cristina 
dc.date.accessioned2021-05-17T11:58:37Z
dc.date.available2021-05-17T11:58:37Z
dc.date.issued2021-04
dc.identifier.issn0038-092X
dc.identifier.urihttp://hdl.handle.net/10259/5768
dc.description.abstractThere are several compilations of sky classifications that refer to Meteorological Indices (MIs) (variables usually recorded at meteorological ground stations), due to the scarcity of sky scanner devices that can supply the experimental data needed to apply the CIE standard sky classification. The use of one rather than another MI is never justified, because there is no standardized criterion for their selection. In this study, forty-three MIs, traditionally used to define different sky conditions, are reviewed. Feature Selection (FS) is a key step in the design of a sky-classification algorithm using MIs as an alternative to data from sky scanners. Four procedural methods for FS -Pearson, Permutation Importance, Recursive Feature Elimination, and Boruta- are applied to an extensive data set of MIs that includes CIE standard sky classification data, which was used as a reference. The use of FS procedures significatively reduced the original set of MIs, permitting the construction of different classification trees with high performance for the sky classification. In the case of the Pearson FS method, the classification tree only used two MIs. The advantage of the Pearson FS method is that it functions independently from the machine-learning algorithm used latter for the sky classification.en
dc.format.mimetypeapplication/pdf
dc.language.isoenges
dc.publisherElsevieren
dc.relation.ispartofSolar Energy. 2021, V. 218, p. 95-107en
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCIE standard sky classificationen
dc.subjectFeature selectionen
dc.subjectMeteorological indicesen
dc.subjectMachine learningen
dc.subject.otherElectrotecniaes
dc.subject.otherElectrical engineeringen
dc.titleFeature selection for CIE standard sky classificationen
dc.typeinfo:eu-repo/semantics/articleen
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.relation.publisherversionhttps://doi.org/10.1016/j.solener.2021.02.039es
dc.identifier.doi10.1016/j.solener.2021.02.039
dc.relation.projectIDinfo:eu-repo/grantAgreement/JCyL/BU021G19
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN/RTI2018-098900-B-I00
dc.journal.titleSolar Energyen
dc.volume.number218es
dc.page.initial95es
dc.page.final107es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige