Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contactez-nous
  • Faire parvenir un commentaire
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout RIUBUCommunautés & CollectionsPar date de publicationAuteursTitresSujetsCette collectionPar date de publicationAuteursTitresSujets

    Mon compte

    Ouvrir une sessionS'inscrire

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de RIUBU
    • E-Prints
    • Untitled
    • Untitled
    • Artículos GICAP
    • Voir le document
    •   Accueil de RIUBU
    • E-Prints
    • Untitled
    • Untitled
    • Artículos GICAP
    • Voir le document

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/6634

    Título
    An Intelligent Visualisation Tool to Analyse the Sustainability of Road Transportation
    Autor
    Alonso de Armiño Pérez, CarlosAutoridad UBU Orcid
    Urda Muñoz, DanielAutoridad UBU Orcid
    Alcalde Delgado, RobertoAutoridad UBU Orcid
    García Pineda, Luis SantiagoAutoridad UBU Orcid
    Herrero Cosío, ÁlvaroAutoridad UBU Orcid
    Publicado en
    Sustainability. 2022, V. 14, n. 2, 777
    Editorial
    MDPI
    Fecha de publicación
    2022-01
    ISSN
    2071-1050
    DOI
    10.3390/su14020777
    Résumé
    Road transport is an integral part of economic activity and is therefore essential for its development. On the downside, it accounts for 30% of the world’s GHG emissions, almost a third of which correspond to the transport of freight in heavy goods vehicles by road. Additionally, means of transport are still evolving technically and are subject to ever more demanding regulations, which aim to reduce their emissions. In order to analyse the sustainability of this activity, this study proposes the application of novel Artificial Intelligence techniques (more specifically, Machine Learning). In this research, the use of Hybrid Unsupervised Exploratory Plots is broadened with new Exploratory Projection Pursuit techniques. These, together with clustering techniques, form an intelligent visualisation tool that allows knowledge to be obtained from a previously unknown dataset. The proposal is tested with a large dataset from the official survey for road transport in Spain, which was conducted over a period of 7 years. The results obtained are interesting and provide encouraging evidence for the use of this tool as a means of intelligent analysis on the subject of developments in the sustainability of road transportation.
    Palabras clave
    Artificial intelligence
    Unsupervised machine learning
    Exploratory projection pursuit
    Clustering
    Road transportation
    Transport sustainability
    Age of transport means
    Materia
    Transportes
    Transportation
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/6634
    Versión del editor
    https://doi.org/10.3390/su14020777
    Aparece en las colecciones
    • Artículos GICAP
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Fichier(s) constituant ce document
    Nombre:
    Alonso-sustainability_2022.pdf
    Tamaño:
    3.414Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Afficher la notice complète

    Universidad de Burgos

    Powered by MIT's. DSpace software, Version 5.10