Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contattaci
  • Manda Feedback
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto RIUBUArchivi & CollezioniData di pubblicazioneAutoriTitoliSoggettiQuesta CollezioneData di pubblicazioneAutoriTitoliSoggetti

    My Account

    LoginRegistrazione

    Statistiche

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Artículos GICAP
    • Mostra Item
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Artículos GICAP
    • Mostra Item

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/6635

    Título
    Advanced Visualization of Intrusions in Flows by Means of Beta-Hebbian Learning
    Autor
    Quintián, Héctor
    Jove, Esteban
    Casteleiro-Roca, José-Luis
    Urda Muñoz, DanielAutoridad UBU Orcid
    Arroyo Puente, ÁngelAutoridad UBU Orcid
    Calvo-Rolle, José Luis
    Herrero Cosío, ÁlvaroAutoridad UBU Orcid
    Corchado, EmilioAutoridad UBU Orcid
    Publicado en
    Logic Journal of the IGPL. 2022, V. 30, n. 6, p. 1056–1073
    Editorial
    Oxford University Press
    Fecha de publicación
    2022-12
    ISSN
    1367-0751
    DOI
    10.1093/jigpal/jzac013
    Abstract
    Detecting intrusions in large networks is a highly demanding task. In order to reduce the computation demand of analysing every single packet travelling along one of such networks, some years ago flows were proposed as a way of summarizing traffic information. Very few research works have addressed intrusion detection in flows from a visualizations perspective. In order to bridge this gap, the present paper proposes the application of a novel projection method (Beta Hebbian Learning) under this framework. With the aim to validate this method, 8 traffic segments, containing many flows, have been analysed by means of this projection method. The promising results obtained for these segments, extracted from the University of Twente dataset, validate the proposed application.
    Palabras clave
    Intrusion detection
    Traffic flow
    Exploratory projection pursuit
    Visualization
    Artificial neural networks
    Unsupervised learning
    Materia
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/6635
    Versión del editor
    https://doi.org/10.1093/jigpal/jzac013
    Aparece en las colecciones
    • Artículos GICAP
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Files in questo item
    Nombre:
    Quintian-LjIGPL_2022.pdf
    Tamaño:
    4.681Mb
    Formato:
    Adobe PDF
    Thumbnail
    Mostra/Apri

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostra tutti i dati dell'item