dc.contributor.author | Pérez Diez, Fernando | |
dc.contributor.author | Cabrerizo Sinca, Julià | |
dc.contributor.author | Roche Vallès, David | |
dc.contributor.author | Campos Cacheda, José Magín | |
dc.date.accessioned | 2022-09-15T11:17:06Z | |
dc.date.available | 2022-09-15T11:17:06Z | |
dc.date.issued | 2021-07 | |
dc.identifier.isbn | 978-84-18465-12-3 | |
dc.identifier.uri | http://hdl.handle.net/10259/6863 | |
dc.description | Trabajo presentado en: R-Evolucionando el transporte, XIV Congreso de Ingeniería del Transporte (CIT 2021), realizado en modalidad online los días 6, 7 y 8 de julio de 2021, organizado por la Universidad de Burgos | es |
dc.description.abstract | The phenomenon of "smart cities" generalizes the use of Information and Communication
Technologies. The generation and use of data to manage mobility is a challenge that many
cities are betting on and investing in. Through the Internet of all things (IoT) and the use of
sensors and mechanisms for capturing information, the number of data analysis tools such
as Big Data, Artificial Intelligence (AI), and Augmented Reality (AR) has increased.
The tools that are used to interpret events are applied to the analysis of video and
photographic images and comprise of a set of programs, mathematical algorithms and
protocols. The implementation of procedures could enable the automatic interpretation of
image information, from the most basic such as changes in the presence of objects or people,
to the identification of complex shapes and relevant event detection. With the constant use
of the assisted process learning (Machine Learning), it’s possible to improve event
interpretation through the customization of learning protocols.
Repetitively trained software can identify relevant events and report changes in critical
scenarios that can trigger a series of protocols. The use of artificial intelligence techniques
makes it possible to automate monotonous processes and improve transport management.
This article analyzes different technologies used to generate transport information and data
validation. It is intended to experiment with the use of technologies in the detection of
relevant facts, changes of state, and identification of events. It also measures the reliability
level when detecting events, and studies the implementation of possible solutions into the
transport management system, in order to assist in decision making processes. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | es |
dc.publisher | Universidad de Burgos. Servicio de Publicaciones e Imagen Institucional | es |
dc.relation.ispartof | R-Evolucionando el transporte | es |
dc.relation.uri | http://hdl.handle.net/10259/6490 | |
dc.subject | Big Data | en |
dc.subject | Inteligencia artificial | es |
dc.subject | Artificial intelligence | en |
dc.subject.other | Ingeniería civil | es |
dc.subject.other | Civil engineering | en |
dc.subject.other | Transportes | es |
dc.subject.other | Transportation | en |
dc.title | Evaluation of transport events with the use of Big Data, artificial intelligence and augmented reality techniques | en |
dc.type | info:eu-repo/semantics/conferenceObject | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.relation.publisherversion | https://doi.org/10.36443/9788418465123 | es |
dc.identifier.doi | 10.36443/10259/6863 | |
dc.page.initial | 255 | es |
dc.page.final | 278 | es |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |