Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/6875
Título
Towards the numerical ground-borne vibrations predictive models as a design tool for railway lines: A starting point
Publicado en
R-Evolucionando el transporte
Editorial
Universidad de Burgos. Servicio de Publicaciones e Imagen Institucional
Fecha de publicación
2021-07
ISBN
978-84-18465-12-3
DOI
10.36443/10259/6875
Descripción
Trabajo presentado en: R-Evolucionando el transporte, XIV Congreso de Ingeniería del Transporte (CIT 2021), realizado en modalidad online los días 6, 7 y 8 de julio de 2021, organizado por la Universidad de Burgos
Abstract
In recent decades, High-Speed Railway (HSR) lines have become one of the most extended
and environmental-friendly ways to plan new mass transport networks. These systems are
directly influenced by its operational speed generated dynamic effects and the areas where
it runs through. This necessarily requires to predict ground-borne vibrations generated by
trains passing-by populated areas and its influence zone.
Trends in ground-borne measurements, prediction models, and isolation systems are usually
performed for maximum operation speed. This method implies the maximum dynamic
forces which are suitable for structural calculations (generally developed in time domain)
but not necessary for vibration related issues (emission and/or transmission). Additionally,
these studies are mainly focused on urban areas where maximum operational speed are
frequently far from railways service’s top speeds.
Related to frequency domain, it is known that upper frequencies are not the most disturbing
ones. In fact, European structural standards usually cut frequencies off at 30 Hz, so much
relevant information for vibrational prediction is ignored due to it does not influence
structural issues.
Moreover, current common predictive numerical models usually apply punctual loads (birth
& death) that are disposed to run in certain speed conditions. This method, which is
considered valid for time domain analysis, are identified to be incomplete for frequency
domain components due to its discontinuous application of loads.
The implementation of contact theories in the wheel-rail interface implies a continuous load
application, refining the obtained results but increasing computational cost.
In this study, different scenarios are compared varying inner and boundary conditions of a
model, with the aim of validate results and optimize resources by obtaining a parametrical
influence study that will show how different assumptions and cases could condition groundborne
vibrational studies results.
Palabras clave
Ferrocarriles
Railways
Materia
Ingeniería civil
Civil engineering
Transportes
Transportation
Versión del editor
Relacionado con
Aparece en las colecciones