dc.contributor.author | Cardona, John F. | |
dc.contributor.author | Castaneda, Juliana | |
dc.contributor.author | Martins, Leandro do C. | |
dc.contributor.author | Gandouz, Mariem | |
dc.contributor.author | Juan, Angel A. | |
dc.contributor.author | Franco, Guillermo | |
dc.date.accessioned | 2022-09-16T07:08:08Z | |
dc.date.available | 2022-09-16T07:08:08Z | |
dc.date.issued | 2021-07 | |
dc.identifier.isbn | 978-84-18465-12-3 | |
dc.identifier.uri | http://hdl.handle.net/10259/6876 | |
dc.description | Trabajo presentado en: R-Evolucionando el transporte, XIV Congreso de Ingeniería del Transporte (CIT 2021), realizado en modalidad online los días 6, 7 y 8 de julio de 2021, organizado por la Universidad de Burgos | es |
dc.description.abstract | This paper discusses a case study in which publicly available data of a rail freight transportation firm has been gathered, cleansed, and analyzed in order to: (i) describe the data using statistical indicators and graphs; (ii) identify patterns regarding several Key Performance Indicators; (iii) obtain forecasts on the future evolution of these indicators; and (iv) use the identified patterns and the generated forecasts to propose customized insurance products that reflect the current and future freight transportation activity. The paper illustrates the different methodological steps required during the extraction and cleansing of the data --which required the development of Python scripts--, the use of time series analysis for obtaining reliable forecasts, and the use of machine learning models for designing customized insurance coverage from the identified patterns and predicted values. | en |
dc.description.sponsorship | This study was collectively completed and supported by Guy Carpenter & Company, LLC, and the Universitat Oberta de Catalunya. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | es |
dc.publisher | Universidad de Burgos. Servicio de Publicaciones e Imagen Institucional | es |
dc.relation.ispartof | R-Evolucionando el transporte | es |
dc.relation.uri | http://hdl.handle.net/10259/6490 | |
dc.subject | Ferrocarriles | es |
dc.subject | Railways | en |
dc.subject.other | Ingeniería civil | es |
dc.subject.other | Civil engineering | en |
dc.subject.other | Transportes | es |
dc.subject.other | Transportation | en |
dc.title | Using Data Analytics & Machine Learning to Design Business Interruption Insurance Products for Rail Freight Operators | en |
dc.type | info:eu-repo/semantics/conferenceObject | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.relation.publisherversion | https://doi.org/10.36443/9788418465123 | es |
dc.identifier.doi | 10.36443/10259/6876 | |
dc.page.initial | 487 | es |
dc.page.final | 504 | es |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
Stöbern
Gesamter BestandBereiche & SammlungenErscheinungsdatumAutorenTitelnSchlagwortenDiese SammlungErscheinungsdatumAutorenTitelnSchlagworten