Mostra i principali dati dell'item

dc.contributor.authorRodríguez López, Juana Carmen
dc.contributor.authorMoscoso López, José Antonio
dc.contributor.authorRuiz Aguilar, Juan Jesús
dc.contributor.authorRodríguez García, Inmaculada
dc.contributor.authorAlcántara Pérez, Jose Manuel
dc.contributor.authorTurias Domínguez, Ignacio J.
dc.date.accessioned2022-09-20T06:47:07Z
dc.date.available2022-09-20T06:47:07Z
dc.date.issued2021-07
dc.identifier.isbn978-84-18465-12-3
dc.identifier.urihttp://hdl.handle.net/10259/6930
dc.descriptionTrabajo presentado en: R-Evolucionando el transporte, XIV Congreso de Ingeniería del Transporte (CIT 2021), realizado en modalidad online los días 6, 7 y 8 de julio de 2021, organizado por la Universidad de Burgoses
dc.description.abstractThe aim of this study is to create an intelligent system that improves the efficiency of garbage collection, (cardboard waste, in this particular case). The number of cardboard containers to be collected each day will be determined based on a prediction made on the filled volume recorded in each container. It will be reflected in the cost and fuel savings, reducing emissions and contributing to environmental sustainability. These results will allow planning the sequence of waste removal, which means the optimal collection route considering restrictive parameters such as the type of truck, the location of containers, collection times by zones, and the availability of working staff. A filling prediction system is proposed based on real historical data provided by the current waste collection company in Algeciras (ARCGISA). To achieve this objective, an intelligent system is designed using predictive analytics and several methods based on machine learning, modelling the collection system as a classification model, comparing the results from a statistical point of view (using sensitivity, specificity, etc.). The results obtained with the best-tested method indicate an improvement average rate of 26% in sensitivity performance index and 67% in specificity performance index. Currently, waste collection is carried out without predictive analysis. The relevance of an efficient waste collection system is becoming increasingly important. Achieving optimal waste collection will result in improved service to citizens, cost savings for the administration, and significant environmental improvements.en
dc.description.sponsorshipThis work is part of the research project RTI-2018-098160-B-I00 supported by 'MICINN. Programa Estatal de I+D+i Orientada a 'Los Retos de la Sociedad'. Data used in this work have been kindly provided by ARCGISA. Colaboration between ARCGISA and University of Cádiz was supported with Fundación del Campus Tecnológico de Algeciras (FCTA).en
dc.format.mimetypeapplication/pdf
dc.language.isoenges
dc.publisherUniversidad de Burgos. Servicio de Publicaciones e Imagen Institucionales
dc.relation.ispartofR-Evolucionando el transportees
dc.relation.urihttp://hdl.handle.net/10259/6490
dc.subjectModelizaciónes
dc.subjectModellingen
dc.subjectSimulaciónes
dc.subjectSimulationen
dc.subjectTransporte marítimoes
dc.subjectMaritime transporten
dc.subject.otherIngeniería civiles
dc.subject.otherCivil engineeringen
dc.subject.otherTransporteses
dc.subject.otherTransportationen
dc.subject.otherInformáticaes
dc.subject.otherComputer scienceen
dc.titlePrediction of container filling for the selective waste collection in Algeciras (Spain)en
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.relation.publisherversionhttps://doi.org/10.36443/9788418465123es
dc.identifier.doi10.36443/10259/6930
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098160-B-I00/ES/DEEP LEARNING IN AIR POLLUTION FORECASTING
dc.page.initial1393es
dc.page.final1407es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Files in questo item

Thumbnail

Questo item appare nelle seguenti collezioni

Mostra i principali dati dell'item