Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/6961
Título
Autonomous vehicle control in CARLA Challenge
Autor
Publicado en
R-Evolucionando el transporte
Editorial
Universidad de Burgos. Servicio de Publicaciones e Imagen Institucional
Fecha de publicación
2021-07
ISBN
978-84-18465-12-3
DOI
10.36443/10259/6961
Descripción
Trabajo presentado en: R-Evolucionando el transporte, XIV Congreso de Ingeniería del Transporte (CIT 2021), realizado en modalidad online los días 6, 7 y 8 de julio de 2021, organizado por la Universidad de Burgos
Zusammenfassung
The introduction of Autonomous Vehicles (AVs) in a realistic urban environment is an
ambitious objective. AV validation on real scenarios involving actual objects such as cars or
pedestrians in a wide range of traffic cases would escalate the cost and could generate
hazardous situations. Consequently, autonomous driving simulators are quickly evolving to
cover the gap to achieve a fully autonomous driving architecture validation. Most used 3D
simulators in self-driving cars field are V-REP (Rohmer, E., 2013) and Gazebo (KOENIG,
N. and HOWARD, A., 2004), due to an easy integration with ROS (QUIGLEY, 2009)
platform to increase the interoperability with other systems.
Those simulators provide accurate motion information (more appropriate for easier scenes
like robotic arms) but not a realistic appearance and not allowing real-time systems, not
being able to recreate complex traffic scenes. CARLA (DOSOVITSKIY, A., 2017) opensource
AV simulator is designed to be able to train and validate control and perception
algorithms in complex traffic scenarios with hyper-realistic environments.
CARLA simulator allows to easily modify on-board sensors such as cameras or LiDAR,
weather conditions and also the traffic scene to perform specific traffic cases. In Summer
2019, CARLA launched its driving challenge to allow everyone to test their own control
techniques under the same traffic scenarios, scoring its performance regarding traffic rules.
In this paper, the Robesafe researching group approach will be explained, detailing vehicle
motion control and object detection adapted from Smart Elderly Car (GÓMEZ-HUÉLAMO,
C., 2019) that lead the group to reach the 4th place in Track 3 challenge, where HD Map,
Waypoints and environmental sensors data (LiDAR, RGB cameras and GPS) were provided.
Palabras clave
Vehículos
Vehicles
Formas de movilidad
Means of mobility
Vehículos autónomos
Autonomous vehicles
Materia
Ingeniería civil
Civil engineering
Transportes
Transportation
Versión del editor
Relacionado con
Aparece en las colecciones