Mostra i principali dati dell'item

dc.contributor.authorPáez, Teresa
dc.contributor.authorMartínez Cuezva, Alberto 
dc.contributor.authorPalma, Jesús
dc.contributor.authorVentosa Arbaizar, Edgar 
dc.date.accessioned2022-09-21T11:00:10Z
dc.date.available2022-09-21T11:00:10Z
dc.date.issued2019-11
dc.identifier.issn2574-0962
dc.identifier.urihttp://hdl.handle.net/10259/6983
dc.description.abstractAlkaline flow batteries are attracting increasing attention for stationary energy storage. Very promising candidates have been proposed as active species for the negative compartment, while potassium ferrocyanide (K4Fe(CN)6) has been the only choice for the positive one. The energy density of this family of batteries is limited by the low solubility of K4Fe(CN)6 in alkaline media. Herein, we propose a general strategy to increase the energy density of this family of alkaline flow batteries by storing energy in commercial Ni(OH)2 electrodes confined in the positive reservoir. In this way, K4Fe(CN)6 dissolved in the electrolyte acts not only as electroactive species but also as charge carrier between current collector and solid Ni(OH)2 particles located in an external reservoir. A storage capacities of 29 Ah L–1 for the positive compartment is demonstrated. The concept is implemented in three systems, Zn–K4Fe(CN)6, anthraquinone–K4Fe(CN)6, and phenazine–K4Fe(CN)6 alkaline flow battery, showing the versatility of the strategy. Challenges and future directions to exceed the 16 Wh Ltotal–1 demonstrated in this work are discussed.en
dc.description.sponsorshipComunidad de Madrid in the Framework of the Talent Attraction Programme (Grant 2017-T1/AMB-5190) and the Spanish Ministry of Science, Innovation and Universities in the Framework of the Research Challenges Programme (Grant RTI2018-099228-A-I00) is gratefully acknowledged. A.M.-C. thanks Ministerio de Ciencia, Innovación y Universidades for a Ramon y Cajal contract and funding (Grant RYC-2017-22700).en
dc.format.mimetypeapplication/pdf
dc.language.isoenges
dc.publisherAmerican Chemical Societyen
dc.relation.ispartofACS Applied Energy Materials. 2019, V. 2, n. 11, p. 8328–8336en
dc.subjectEnergy storageen
dc.subjectBatteriesen
dc.subjectRedox mediatorsen
dc.subjectEnergy densityen
dc.subjectFerrocyanideen
dc.subject.otherQuímica analíticaes
dc.subject.otherChemistry, Analyticen
dc.titleMediated Alkaline Flow Batteries: From Fundamentals to Applicationen
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.relation.publisherversionhttps://doi.org/10.1021/acsaem.9b01826es
dc.identifier.doi10.1021/acsaem.9b01826
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099228-A-I00/ES/BATERIAS INJECTABLES DE ELECTRODES SEMI-SOLIDOSes
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/RYC-2017-22700es
dc.relation.projectIDinfo:eu-repo/grantAgreement/CAM//2017-T1%2FAMB-5190es
dc.identifier.essn2574-0962
dc.journal.titleACS Applied Energy Materialsen
dc.volume.number2es
dc.issue.number11es
dc.page.initial8328es
dc.page.final8336es
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Files in questo item

Thumbnail

Questo item appare nelle seguenti collezioni

Mostra i principali dati dell'item