Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7017
Título
Supervised machine learning algorithms for measuring and promoting sustainable transportation and green logistics
Publicado en
R-Evolucionando el transporte
Editorial
Universidad de Burgos. Servicio de Publicaciones e Imagen Institucional
Fecha de publicación
2021-07
ISBN
978-84-18465-12-3
DOI
10.36443/10259/7017
Descripción
Trabajo presentado en: R-Evolucionando el transporte, XIV Congreso de Ingeniería del Transporte (CIT 2021), realizado en modalidad online los días 6, 7 y 8 de julio de 2021, organizado por la Universidad de Burgos
Abstract
The sustainable development of freight transport has received much attention in recent
years. The new regulations for sustainable transport activities established by the European
Commission and the United Nations have created the need for road freight transport
companies to develop methodologies to measure the social and environmental impact of
their activities. This work aims to develop a model based on supervised machine learning
methods with intelligent classification algorithms and key performance indicators for each
dimension of sustainability as input data. This model allows establishing the level of
sustainability (high, medium or low). Several classification algorithms were trained,
finding that the support vector machines algorithm is the most accurate, with 98% accuracy
for the data set used. The model is tested by establishing the level of sustainability of a
European company in the road freight sector, thus allowing the establishment of green
strategies for its sustainable development.
Palabras clave
Sostenibilidad
Sustainability
Transporte sostenible
Sustainable transport
Materia
Ingeniería civil
Civil engineering
Transportes
Transportation
Matemáticas
Mathematics
Versión del editor
Relacionado con
Aparece en las colecciones