Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Kontakt
  • Feedback abschicken
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereiche & SammlungenErscheinungsdatumAutorenTitelnSchlagwortenDiese SammlungErscheinungsdatumAutorenTitelnSchlagworten

    Mein Benutzerkonto

    EinloggenRegistrieren

    Statistiken

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   RIUBU Startseite
    • E-Prints
    • Untitled
    • Untitled
    • Untitled
    • Dokumentanzeige
    •   RIUBU Startseite
    • E-Prints
    • Untitled
    • Untitled
    • Untitled
    • Dokumentanzeige

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7222

    Título
    Generalized noncommutative Snyder spaces and projective geometry
    Autor
    Gubitosi, GiuliaAutoridad UBU Orcid
    Ballesteros Castañeda, ÁngelAutoridad UBU Orcid
    Herranz Zorrilla, Francisco JoséAutoridad UBU Orcid
    Publicado en
    Proceedings of Science. 2020, V. 376, p. 190-205
    Editorial
    Sissa
    Fecha de publicación
    2020-08
    ISSN
    1824-8039
    DOI
    10.22323/1.376.0190
    Descripción
    Trabajo presentado en: Corfu Summer Institute 2019 "School and Workshops on Elementary Particle Physics and Gravity" (CORFU2019) - Workshop on Quantum Geometry, Field Theory and Gravity, 31 August - 25 September, Corfù, Greece
    Zusammenfassung
    Given a group of kinematical symmetry generators, one can construct a compatible noncommutative spacetime and deformed phase space by means of projective geometry. This was the main idea behind the very first model of noncommutative spacetime, proposed by H.S. Snyder in 1947. In this framework, spacetime coordinates are the translation generators over a manifold that is symmetric under the required generators, while momenta are projective coordinates on such a manifold. In these proceedings we review the construction of Euclidean and Lorentzian noncommutative Snyder spaces and investigate the freedom left by this construction in the choice of the physical momenta, because of different available choices of projective coordinates. In particular, we derive a quasi-canonical structure for both the Euclidean and Lorentzian Snyder noncommutative models such that their phase space algebra is diagonal although no longer quadratic.
    Materia
    Física
    Physics
    URI
    http://hdl.handle.net/10259/7222
    Versión del editor
    https://doi.org/10.22323/1.376.0190
    Aparece en las colecciones
    • Untitled
    Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Dateien zu dieser Ressource
    Nombre:
    Herranz-pos_2020.pdf
    Tamaño:
    499.4Kb
    Formato:
    Adobe PDF
    Thumbnail
    Öffnen

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Zur Langanzeige