Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contact Us
  • Send Feedback
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of RIUBUCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Compartir

    View Item 
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Untitled
    • View Item
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Untitled
    • View Item

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7222

    Título
    Generalized noncommutative Snyder spaces and projective geometry
    Autor
    Gubitosi, GiuliaUBU authority Orcid
    Ballesteros Castañeda, ÁngelUBU authority Orcid
    Herranz Zorrilla, Francisco JoséUBU authority Orcid
    Publicado en
    Proceedings of Science. 2020, V. 376, p. 190-205
    Editorial
    Sissa
    Fecha de publicación
    2020-08
    ISSN
    1824-8039
    DOI
    10.22323/1.376.0190
    Descripción
    Trabajo presentado en: Corfu Summer Institute 2019 "School and Workshops on Elementary Particle Physics and Gravity" (CORFU2019) - Workshop on Quantum Geometry, Field Theory and Gravity, 31 August - 25 September, Corfù, Greece
    Abstract
    Given a group of kinematical symmetry generators, one can construct a compatible noncommutative spacetime and deformed phase space by means of projective geometry. This was the main idea behind the very first model of noncommutative spacetime, proposed by H.S. Snyder in 1947. In this framework, spacetime coordinates are the translation generators over a manifold that is symmetric under the required generators, while momenta are projective coordinates on such a manifold. In these proceedings we review the construction of Euclidean and Lorentzian noncommutative Snyder spaces and investigate the freedom left by this construction in the choice of the physical momenta, because of different available choices of projective coordinates. In particular, we derive a quasi-canonical structure for both the Euclidean and Lorentzian Snyder noncommutative models such that their phase space algebra is diagonal although no longer quadratic.
    Materia
    Física
    Physics
    URI
    http://hdl.handle.net/10259/7222
    Versión del editor
    https://doi.org/10.22323/1.376.0190
    Collections
    • Untitled
    Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Files in this item
    Nombre:
    Herranz-pos_2020.pdf
    Tamaño:
    499.4Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Show full item record