Show simple item record

dc.contributor.authorGubitosi, Giulia 
dc.contributor.authorBallesteros Castañeda, Ángel 
dc.contributor.authorHerranz Zorrilla, Francisco José 
dc.date.accessioned2023-01-09T11:55:21Z
dc.date.available2023-01-09T11:55:21Z
dc.date.issued2020-08
dc.identifier.issn1824-8039
dc.identifier.urihttp://hdl.handle.net/10259/7222
dc.descriptionTrabajo presentado en: Corfu Summer Institute 2019 "School and Workshops on Elementary Particle Physics and Gravity" (CORFU2019) - Workshop on Quantum Geometry, Field Theory and Gravity, 31 August - 25 September, Corfù, Greeceen
dc.description.abstractGiven a group of kinematical symmetry generators, one can construct a compatible noncommutative spacetime and deformed phase space by means of projective geometry. This was the main idea behind the very first model of noncommutative spacetime, proposed by H.S. Snyder in 1947. In this framework, spacetime coordinates are the translation generators over a manifold that is symmetric under the required generators, while momenta are projective coordinates on such a manifold. In these proceedings we review the construction of Euclidean and Lorentzian noncommutative Snyder spaces and investigate the freedom left by this construction in the choice of the physical momenta, because of different available choices of projective coordinates. In particular, we derive a quasi-canonical structure for both the Euclidean and Lorentzian Snyder noncommutative models such that their phase space algebra is diagonal although no longer quadratic.en
dc.description.sponsorshipThis work has been partially supported by Ministerio de Ciencia, Innovación y Universidades (Spain) under grant MTM2016-79639-P (AEI/FEDER, UE), by Junta de Castilla y León (Spain) under grants BU229P18 and BU091G19. The authors acknowledge the contribution of the COST Action CA18108.en
dc.format.mimetypeapplication/pdf
dc.language.isoenges
dc.publisherSissaen
dc.relation.ispartofProceedings of Science. 2020, V. 376, p. 190-205en
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.otherFísicaes
dc.subject.otherPhysicsen
dc.titleGeneralized noncommutative Snyder spaces and projective geometryen
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.relation.publisherversionhttps://doi.org/10.22323/1.376.0190es
dc.identifier.doi10.22323/1.376.0190
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2016-79639-P/ES/GRUPOS CUANTICOS, ALGEBRAS DE POISSON Y SISTEMAS INTEGRABLESes
dc.relation.projectIDinfo:eu-repo/grantAgreement/Junta de Castilla y León//BU229P18//Modelización matemática en tecnologías cuánticas y nanomaterialeses
dc.relation.projectIDinfo:eu-repo/grantAgreement/Junta de Castilla y León//BU091G19//Grupos cuánticos, modelos integrables y aplicaciones en tecnologías cuánticases
dc.relation.projectIDinfo:eu-repo/grantAgreement/COST//CA18108/EU/Quantum gravity phenomenology in the multi-messenger approach/QG-MM/en
dc.journal.titleProceedings of Sciencees
dc.volume.number376es
dc.page.initial190es
dc.page.final205es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record