Mostrar el registro sencillo del ítem
dc.contributor.author | Gubitosi, Giulia | |
dc.contributor.author | Ballesteros Castañeda, Ángel | |
dc.contributor.author | Herranz Zorrilla, Francisco José | |
dc.date.accessioned | 2023-01-09T11:55:21Z | |
dc.date.available | 2023-01-09T11:55:21Z | |
dc.date.issued | 2020-08 | |
dc.identifier.issn | 1824-8039 | |
dc.identifier.uri | http://hdl.handle.net/10259/7222 | |
dc.description | Trabajo presentado en: Corfu Summer Institute 2019 "School and Workshops on Elementary Particle Physics and Gravity" (CORFU2019) - Workshop on Quantum Geometry, Field Theory and Gravity, 31 August - 25 September, Corfù, Greece | en |
dc.description.abstract | Given a group of kinematical symmetry generators, one can construct a compatible noncommutative spacetime and deformed phase space by means of projective geometry. This was the main idea behind the very first model of noncommutative spacetime, proposed by H.S. Snyder in 1947. In this framework, spacetime coordinates are the translation generators over a manifold that is symmetric under the required generators, while momenta are projective coordinates on such a manifold. In these proceedings we review the construction of Euclidean and Lorentzian noncommutative Snyder spaces and investigate the freedom left by this construction in the choice of the physical momenta, because of different available choices of projective coordinates. In particular, we derive a quasi-canonical structure for both the Euclidean and Lorentzian Snyder noncommutative models such that their phase space algebra is diagonal although no longer quadratic. | en |
dc.description.sponsorship | This work has been partially supported by Ministerio de Ciencia, Innovación y Universidades (Spain) under grant MTM2016-79639-P (AEI/FEDER, UE), by Junta de Castilla y León (Spain) under grants BU229P18 and BU091G19. The authors acknowledge the contribution of the COST Action CA18108. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | es |
dc.publisher | Sissa | en |
dc.relation.ispartof | Proceedings of Science. 2020, V. 376, p. 190-205 | en |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject.other | Física | es |
dc.subject.other | Physics | en |
dc.title | Generalized noncommutative Snyder spaces and projective geometry | en |
dc.type | info:eu-repo/semantics/conferenceObject | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.relation.publisherversion | https://doi.org/10.22323/1.376.0190 | es |
dc.identifier.doi | 10.22323/1.376.0190 | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2016-79639-P/ES/GRUPOS CUANTICOS, ALGEBRAS DE POISSON Y SISTEMAS INTEGRABLES | es |
dc.relation.projectID | info:eu-repo/grantAgreement/Junta de Castilla y León//BU229P18//Modelización matemática en tecnologías cuánticas y nanomateriales | es |
dc.relation.projectID | info:eu-repo/grantAgreement/Junta de Castilla y León//BU091G19//Grupos cuánticos, modelos integrables y aplicaciones en tecnologías cuánticas | es |
dc.relation.projectID | info:eu-repo/grantAgreement/COST//CA18108/EU/Quantum gravity phenomenology in the multi-messenger approach/QG-MM/ | en |
dc.journal.title | Proceedings of Science | es |
dc.volume.number | 376 | es |
dc.page.initial | 190 | es |
dc.page.final | 205 | es |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |