Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contact Us
  • Send Feedback
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of RIUBUCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Compartir

    View Item 
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Artículos GICAP
    • View Item
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Artículos GICAP
    • View Item

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7234

    Título
    Advanced feature selection to study the internationalization strategy of enterprises
    Autor
    Herrero Cosío, ÁlvaroUBU authority Orcid
    Jiménez, AlfredoUBU authority Orcid
    Alcalde Delgado, RobertoUBU authority Orcid
    Publicado en
    PeerJ Computer Science. 2021, V. 7, e403
    Editorial
    PeerJ
    Fecha de publicación
    2021-03
    ISSN
    2376-5992
    DOI
    10.7717/peerj-cs.403
    Abstract
    Firms face an increasingly complex economic and financial environment in which the access to international networks and markets is crucial. To be successful, companies need to understand the role of internationalization determinants such as bilateral psychic distance, experience, etc. Cutting-edge feature selection methods are applied in the present paper and compared to previous results to gain deep knowledge about strategies for Foreign Direct Investment. More precisely, evolutionary feature selection, addressed from the wrapper approach, is applied with two different classifiers as the fitness function: Bagged Trees and Extreme Learning Machines. The proposed intelligent system is validated when applied to real-life data from Spanish Multinational Enterprises (MNEs). These data were extracted from databases belonging to the Spanish Ministry of Industry, Tourism, and Trade. As a result, interesting conclusions are derived about the key features driving to the internationalization of the companies under study. This is the first time that such outcomes are obtained by an intelligent system on internationalization data.
    Palabras clave
    Evolutionary feature selection
    Bagged decision trees
    Extreme learning machines
    Internationaliza-tion
    Multinational enterprises
    Materia
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/7234
    Versión del editor
    https://doi.org/10.7717/peerj-cs.403
    Collections
    • Untitled
    • Artículos GICAP
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Files in this item
    Nombre:
    Herrero-pcs_2021.pdf
    Tamaño:
    3.176Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Show full item record