Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contact Us
  • Send Feedback
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of RIUBUCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Compartir

    View Item 
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Artículos SWIFT
    • View Item
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Artículos SWIFT
    • View Item

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7237

    Título
    Extension of PAR Models under Local All-Sky Conditions to Different Climatic Zones
    Autor
    García Rodríguez, AnaUBU authority Orcid
    García Rodríguez, SolUBU authority Orcid
    Granados López, DiegoUBU authority Orcid
    Diez Mediavilla, MontserratUBU authority Orcid
    Alonso Tristán, CristinaUBU authority Orcid
    Publicado en
    Applied Sciences. 2022, V. 12, n. 5, 2372
    Editorial
    MDPI
    Fecha de publicación
    2022-03
    ISSN
    2076-3417
    DOI
    10.3390/app12052372
    Abstract
    Four models for predicting Photosynthetically Active Radiation (PAR) were obtained through MultiLinear Regression (MLR) and an Artificial Neural Network (ANN) based on 10 meteorological indices previously selected from a feature selection algorithm. One model was developed for all sky conditions and the other three for clear, partial, and overcast skies, using a sky classification based on the clearness index (kt). The experimental data were recorded in Burgos (Spain) at ten-minute intervals over 23 months between 2019 and 2021. Fits above 0.97 and Root Mean Square Error (RMSE) values below 7.5% were observed. The models developed for clear and overcast sky conditions yielded better results. Application of the models to the seven experimental ground stations that constitute the Surface Radiation Budget Network (SURFRAD) located in different Köppen climatic zones of the USA yielded fitted values higher than 0.98 and RMSE values less than 11% in all cases regardless of the sky type.
    Palabras clave
    Photosynthetically active radiation
    kt sky classification
    ANN
    Multilinear regression models
    Materia
    Electrotecnia
    Electrical engineering
    URI
    http://hdl.handle.net/10259/7237
    Versión del editor
    https://doi.org/10.3390/app12052372
    Collections
    • Untitled
    • Untitled
    • Artículos SWIFT
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Files in this item
    Nombre:
    Garcia-as_2022.pdf
    Tamaño:
    3.751Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Show full item record