Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7239
Título
Effect of Phase-Change Materials on Laboratory-Made Insoles: Analysis of Environmental Conditions
Autor
Publicado en
Materials. 2022, V. 15, n. 19, 6967
Editorial
MDPI
Fecha de publicación
2022-10
ISSN
1996-1944
DOI
10.3390/ma15196967
Abstract
Thermal comfort is essential when wearing a postural-corrective garment. Discomfort of any kind may deter regular use and prolong user recovery time. The objective of this work is therefore to optimize a new compound that can alter the temperature of orthopedic insoles, thereby improving the thermal comfort for the user. Its novelty is a resin composite that contains a thermoregulatory Phase-Change Material (PCM). An experimental design was used to optimize the proportions of PCM, epoxy resin, and thickener in the composite and its effects. A Box–Behnken factor design was applied to each compound to establish the optimal proportions of all three substances. The dependent variables were the Shore A and D hardness tests and thermogravimetric heat-exchange measurements. As was foreseeable, the influence of the PCM on the thermal absorption levels of the compound was quantifiable and could be determined from the results of the factor design. Likewise, compound hardness was determined by resin type and resin-PCM interactions, so the quantity of PCM also had some influence on the mechanical properties of the composite. Both the durability and the flexibility of the final product complied with current standards for orthopedic insoles.
Palabras clave
PCM
Insole
Epoxy resin
Paraffin
Insole thermal properties
Box–Behnken design
Materia
Ingeniería
Engineering
Materiales
Materials
Versión del editor
Aparece en las colecciones