Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Entre em contato
  • Deixe sua opinião
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidades e ColeçõesPor data do documentoAutoresTítulosAssuntosEsta coleçãoPor data do documentoAutoresTítulosAssuntos

    Minha conta

    EntrarCadastro

    Estatísticas

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • E-Prints
    • Untitled
    • Untitled
    • Artículos GICAP
    • Ver item
    •   Página inicial
    • E-Prints
    • Untitled
    • Untitled
    • Artículos GICAP
    • Ver item

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7246

    Título
    A Decision-Making Tool Based on Exploratory Visualization for the Automotive Industry
    Autor
    Redondo Guevara, RaquelAutoridad UBU Orcid
    Herrero Cosío, ÁlvaroAutoridad UBU Orcid
    Corchado, EmilioAutoridad UBU Orcid
    Sedano, Javier
    Publicado en
    Applied sciences. 2020, V. 10, n. 12, e4355
    Editorial
    MDPI
    Fecha de publicación
    2020-06
    DOI
    10.3390/app10124355
    Resumo
    In recent years, the digital transformation has been advancing in industrial companies, supported by the Key Enabling Technologies (Big Data, IoT, etc.) of Industry 4.0. As a consequence, companies have large volumes of data and information that must be analyzed to give them competitive advantages. This is of the utmost importance in fields such as Failure Detection (FD) and Predictive Maintenance (PdM). Finding patterns in such data is not easy, but cutting-edge technologies, such as Machine Learning (ML), can make great contributions. As a solution, this study extends Hybrid Unsupervised Exploratory Plots (HUEPs), as a visualization technique that combines Exploratory Projection Pursuit (EPP) and Clustering methods. An extended formulation of HUEPs is proposed, adding for the first time the following EPP methods: Classical Multidimensional Scaling, Sammon Mapping and Factor Analysis. Extended HUEPs are validated in a case study associated with a multinational company in the automotive industry sector. Two real-life datasets containing data gathered from a Waterjet Cutting tool are visualized in an intuitive and informative way. The obtained results show that HUEPs is a technique that supports the continuous monitoring of machines in order to anticipate failures. This contribution to visual data analytics can help companies in decision-making, regarding FD and PdM projects.
    Palabras clave
    Industry 4.0
    Industrial internet of things
    Smart factories
    Advanced manufacturing
    Industrial big data
    Predictive maintenance
    Visualization
    Machine learning
    Clustering
    Exploratory projection pursuit
    Materia
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/7246
    Versión del editor
    https://doi.org/10.3390/app10124355
    Aparece en las colecciones
    • Artículos GICAP
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Arquivos deste item
    Nombre:
    Redondo-as_2020.pdf
    Tamaño:
    2.745Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar registro completo

    Universidad de Burgos

    Powered by MIT's. DSpace software, Version 5.10