Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contact Us
  • Send Feedback
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of RIUBUCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Compartir

    View Item 
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Artículos GICAP
    • View Item
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Artículos GICAP
    • View Item

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7252

    Título
    Gaining deep knowledge of Android malware families through dimensionality reduction techniques
    Autor
    Vega Vega, Rafael Alejandro
    Quintián, Héctor
    Calvo-Rolle, José Luis
    Herrero Cosío, ÁlvaroUBU authority Orcid
    Corchado, EmilioUBU authority Orcid
    Publicado en
    Logic Journal of the IGPL. 2019, V. 27, n. 2, p. 160-176
    Editorial
    Oxford University Press
    Fecha de publicación
    2019-04
    ISSN
    1367-0751
    DOI
    10.1093/jigpal/jzy030
    Abstract
    This research proposes the analysis and subsequent characterisation of Android malware families by means of low dimensional visualisations using dimensional reduction techniques. The well-known Malgenome data set, coming from the Android Malware Genome Project, has been thoroughly analysed through the following six dimensionality reduction techniques: Principal Component Analysis, Maximum Likelihood Hebbian Learning, Cooperative Maximum Likelihood Hebbian Learning, Curvilinear Component Analysis, Isomap and Self Organizing Map. Results obtained enable a clear visual analysis of the structure of this high-dimensionality data set, letting us gain deep knowledge about the nature of such Android malware families. Interesting conclusions are obtained from the real-life data set under analysis.
    Palabras clave
    Android malware
    Malware families
    Dimensionality reduction
    Artificial neural networks
    Materia
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/7252
    Versión del editor
    https://doi.org/10.1093/jigpal/jzy030
    Collections
    • Artículos GICAP
    Files in this item
    Nombre:
    Herrero-igpl_2019.pdf
    Tamaño:
    3.236Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Show full item record