Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Entre em contato
  • Deixe sua opinião
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidades e ColeçõesPor data do documentoAutoresTítulosAssuntosEsta coleçãoPor data do documentoAutoresTítulosAssuntos

    Minha conta

    EntrarCadastro

    Estatísticas

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • E-Prints
    • Untitled
    • Untitled
    • Artículos ADMIRABLE
    • Ver item
    •   Página inicial
    • E-Prints
    • Untitled
    • Untitled
    • Artículos ADMIRABLE
    • Ver item

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7335

    Título
    Virtual Reality Training Application for the Condition-Based Maintenance of Induction Motors
    Autor
    Checa Cruz, DavidAutoridad UBU Orcid
    Saucedo Dorantes, Juan José
    Osornio-Ríos, Roque Alfredo
    Antonio-Daviu, José Alfonso
    Bustillo Iglesias, AndrésAutoridad UBU Orcid
    Publicado en
    Applied sciences. 2022, V. 12, n. 1, 414
    Editorial
    MDPI
    Fecha de publicación
    2022-01
    DOI
    10.3390/app12010414
    Resumo
    The incorporation of new technologies as training methods, such as virtual reality (VR), facilitates instruction when compared to traditional approaches, which have shown strong limitations in their ability to engage young students who have grown up in the smartphone culture of continuous entertainment. Moreover, not all educational centers or organizations are able to incorporate specialized labs or equipment for training and instruction. Using VR applications, it is possible to reproduce training programs with a high rate of similarity to real programs, filling the gap in traditional training. In addition, it reduces unnecessary investment and prevents economic losses, avoiding unnecessary damage to laboratory equipment. The contribution of this work focuses on the development of a VR-based teaching and training application for the condition-based maintenance of induction motors. The novelty of this research relies mainly on the use of natural interactions with the VR environment and the design’s optimization of the VR application in terms of the proposed teaching topics. The application is comprised of two training modules. The first module is focused on the main components of induction motors, the assembly of workbenches and familiarization with induction motor components. The second module employs motor current signature analysis (MCSA) to detect induction motor failures, such as broken rotor bars, misalignments, unbalances, and gradual wear on gear case teeth. Finally, the usability of this VR tool has been validated with both graduate and undergraduate students, assuring the suitability of this tool for: (1) learning basic knowledge and (2) training in practical skills related to the condition-based maintenance of induction motors.
    Palabras clave
    Virtual reality
    Induction motors
    Fault detection
    FFT
    Eye tracking
    Materia
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/7335
    Versión del editor
    https://doi.org/10.3390/app12010414
    Aparece en las colecciones
    • Artículos ADMIRABLE
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Arquivos deste item
    Nombre:
    Checa-as_2022.pdf
    Tamaño:
    8.407Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar registro completo