dc.contributor.author | Barbero Aparicio, José Antonio | |
dc.contributor.author | Cuesta López, Santiago | |
dc.contributor.author | García Osorio, César | |
dc.contributor.author | Pérez-Rodríguez, Javier | |
dc.contributor.author | García-Pedrajas, Nicolás | |
dc.date.accessioned | 2023-01-26T12:32:03Z | |
dc.date.available | 2023-01-26T12:32:03Z | |
dc.date.issued | 2022-12 | |
dc.identifier.uri | http://hdl.handle.net/10259/7337 | |
dc.description.abstract | There is evidence that DNA breathing (spontaneous opening of the DNA strands)
plays a relevant role in the interactions of DNA with other molecules, and in particular
in the transcription process. Therefore, having physical models that can predict these
openings is of interest. However, this source of information has not been used before
either in transcription start sites (TSSs) or promoter prediction. In this article, one such
model is used as an additional information source that, when used by a machine learn‑
ing (ML) model, improves the results of current methods for the prediction of TSSs. In
addition, we provide evidence on the validity of the physical model, as it is able by itself
to predict TSSs with high accuracy. This opens an exciting avenue of research at the
intersection of statistical mechanics and ML, where ML models in bioinformatics can be
improved using physical models of DNA as feature extractors. | es |
dc.description.sponsorship | This work has been supported by the Junta de Andalucia under project UCO1264182 and by the Ministry of Science, Innovation and Universities under project PID2019-109481GB-I00/AEI/q10.13039/501100011033, in both cases co-financed through European Union FEDER funds. José A. Barbero-Aparicio is founded through a predoctoral grant from the University of Burgos. | es |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | es |
dc.publisher | Springer Nature | es |
dc.relation.ispartof | BMC Bioinformatics. 2022, V. 23, n. 1, 565 | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | DNA modelling | es |
dc.subject | DNA breathing | es |
dc.subject | Machine learning | es |
dc.subject | TSS prediction | es |
dc.subject | SVM | es |
dc.subject | String kernels | es |
dc.subject.other | Informática | es |
dc.subject.other | Computer science | es |
dc.title | Nonlinear physics opens a new paradigm for accurate transcription start site prediction | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.relation.publisherversion | https://doi.org/10.1186/s12859-022-05129-4 | es |
dc.identifier.doi | 10.1186/s12859-022-05129-4 | |
dc.relation.projectID | info:eu-repo/grantAgreement/Junta de Andalucía//UCO-1264182/ | es |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109481GB-I00/ES/NUEVA APROXIMACION A LA CONSTRUCCION DE ENJAMBRES PARA APRENDIZAJE MULTI-ETIQUETA: APLICACION A LA QUEMINFORMATICA Y LA BIOINFORMATICA/ | es |
dc.identifier.essn | 1471-2105 | |
dc.journal.title | BMC Bioinformatics | es |
dc.volume.number | 23 | es |
dc.issue.number | 1 | es |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |