Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contactez-nous
  • Faire parvenir un commentaire
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout RIUBUCommunautés & CollectionsPar date de publicationAuteursTitresSujetsCette collectionPar date de publicationAuteursTitresSujets

    Mon compte

    Ouvrir une sessionS'inscrire

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de RIUBU
    • E-Prints
    • Untitled
    • Untitled
    • Untitled
    • Voir le document
    •   Accueil de RIUBU
    • E-Prints
    • Untitled
    • Untitled
    • Untitled
    • Voir le document

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7411

    Título
    A Soft Computing System for Modelling the Manufacture of Steel Components
    Autor
    Bustillo Iglesias, AndrésAutoridad UBU Orcid
    Sedano, Javier
    Curiel Herrera, Leticia ElenaAutoridad UBU Orcid
    Villar, José Ramón
    Corchado, EmilioAutoridad UBU Orcid
    Publicado en
    Computer Recognition Systems 3, p. 601–609
    Editorial
    Springer
    Fecha de publicación
    2009
    ISBN
    978-3-540-93905-4
    ISSN
    1867-5662
    DOI
    10.1007/978-3-540-93905-4_70
    Résumé
    In this paper we present a soft computing system developed to optimize the laser milling manufacture of high value steel components, a relatively new and interesting industrial technique. This multidisciplinary study is based on the application of neural projection models in conjunction with identification systems, in order to find the optimal operating conditions in this industrial issue. Sensors on a laser milling centre capture the data used in this industrial case study defined under the frame of a machine-tool that manufactures steel components like high value molds and dies. The presented model is based on a two-phase application. The first phase uses a neural projection model capable of determine if the data collected is informative enough based on the existence of internal patterns. The second phase is focus on identifying a model for the laser-milling process based on low-order models such as Black Box ones. The whole system is capable of approximating the optimal form of the model. Finally, it is shown that the Box-Jenkins algorithm, which calculates the function of a linear system from its input and output samples, is the most appropriate model to control such industrial task for the case of steel components.
    Palabras clave
    Test Piece
    Angle Error
    Wall Angle
    Steel Component
    Soft Computing Model
    Materia
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/7411
    Versión del editor
    https://doi.org/10.1007/978-3-540-93905-4_70
    Aparece en las colecciones
    • Untitled
    Fichier(s) constituant ce document
    Nombre:
    A_soft_computing_system_modelling_manufacture_steel_components.pdf
    Tamaño:
    151.1Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Afficher la notice complète