dc.contributor.author | Dieste Velasco, Mª Isabel | |
dc.contributor.author | García Rodríguez, Sol | |
dc.contributor.author | García Rodríguez, Ana | |
dc.contributor.author | Diez Mediavilla, Montserrat | |
dc.contributor.author | Alonso Tristán, Cristina | |
dc.date.accessioned | 2023-03-13T12:15:46Z | |
dc.date.available | 2023-03-13T12:15:46Z | |
dc.date.issued | 2023-01 | |
dc.identifier.uri | http://hdl.handle.net/10259/7537 | |
dc.description.abstract | In the present study, different models constructed with meteorological variables are proposed for the determination of horizontal ultraviolet irradiance (IUV), on the basis of data collected
at Burgos (Spain) during an experimental campaign between March 2020 and May 2022. The aim
is to explore the effectiveness of a range of variables for modelling horizontal ultraviolet irradiance
through a comparison of supervised artificial neural network (ANN) and regression model results.
A preliminary feature selection process using the Pearson correlation coefficient was sufficient to
determine the variables for use in the models. The following variables and their influence on horizontal ultraviolet irradiance were analyzed: horizontal global irradiance (IGH), clearness index (kt),
solar altitude angle (α), horizontal beam irradiance (IBH), diffuse fraction (D), temperature (T), sky
clearness (ε), cloud cover (Cc), horizontal diffuse irradiance (IDH), and sky brightness (∆). The ANN
models yielded results of greater accuracy than the regression models. | en |
dc.description.sponsorship | This research is a result of the project RTI2018-098900-B-I00 financed by the Spanish Ministry of Science and Innovation, project TED2021-131563B-I00 financed by MCIN/AEI/10.13039/501100011033 and the European Union “NextGenerationEU”/PRTR», and Junta de Castilla y León, under grant number INVESTUN/19/BU/0004. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | es |
dc.publisher | MDPI | en |
dc.relation.ispartof | Applied Sciences. 2023, V. 13, n. 3, 1473 | en |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | UV irradiance | en |
dc.subject | ANN | en |
dc.subject | Modeling | en |
dc.subject | Multilinear regression models | en |
dc.subject.other | Electrotecnia | es |
dc.subject.other | Electrical engineering | en |
dc.subject.other | Matemáticas | es |
dc.subject.other | Mathematics | en |
dc.title | Modeling Horizontal Ultraviolet Irradiance for All Sky Conditions by Using Artificial Neural Networks and Regression Models | en |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.relation.publisherversion | https://doi.org/10.3390/app13031473 | es |
dc.identifier.doi | 10.3390/app13031473 | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098900-B-I00/ES/ANALISIS ESPECTRAL DE LA RADIACION SOLAR: APLICACIONES CLIMATICAS, ENERGETICAS Y BIOLOGICAS/ | es |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica, Técnica y de Innovación 2021-2023/TED2021-131563B-I00/ES/Modelado espectral de la radiación solar en entornos urbanos: una oportunidad para la sostenibilidad de las ciudades/ | es |
dc.relation.projectID | info:eu-repo/grantAgreement/Junta de Castilla y León//INVESTUN%2F19%2FBU%2F0004//Valoración técnica de los niveles de exposición a radiación solar en trabajos de exterior: identificación de grupos de riesgo y medidas de prevención/ | es |
dc.identifier.essn | 2076-3417 | |
dc.journal.title | Applied Sciences | en |
dc.volume.number | 13 | es |
dc.issue.number | 3 | es |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |