Show simple item record

dc.contributor.authorSerrano, Carlos
dc.contributor.authorSierra Garcia, Jesús Enrique 
dc.contributor.authorSantos, Matilde
dc.date.accessioned2023-03-21T08:18:40Z
dc.date.available2023-03-21T08:18:40Z
dc.date.issued2022-11
dc.identifier.urihttp://hdl.handle.net/10259/7569
dc.description.abstractFloating offshore wind turbines (FOWTs) are systems with complex and highly nonlinear dynamics; they are subjected to heavy loads, making control with classical strategies a challenge. In addition, they experience vibrations due to wind and waves. Furthermore, the control of the blade angle itself may generate vibrations. To address this issue, in this work we propose the design of an intelligent control system based on fuzzy logic to maintain the rated power of an FOWT while reducing the vibrations. A gain scheduling incremental proportional–derivative fuzzy controller is tuned by genetic algorithms (GAs) and combined with a fuzzy-lookup table to generate the pitch reference. The control gains optimized by the GA are stored in a database to ensure a proper operation for different wind and wave conditions. The software Matlab/Simulink and the simulation tool FAST are used. The latter simulates the nonlinear dynamics of a real 5 MW barge-type FOWT with irregular waves. The hybrid control strategy has been evaluated against the reference baseline controller embedded in FAST in different environmental scenarios. The comparison is assessed in terms of output power and structure stability, with up to 23% and 33% vibration suppression rate for tower top displacement and platform pitch, respectively, with the new control scheme. Fatigue damage equivalent load (DEL) of the blades has been also estimated with satisfactory results.en
dc.description.sponsorshipThis work has been partially supported by the Spanish Ministry of Science and Innovation under the project MCI/AEI/FEDER number RTI2018-094902-B-C21 and PDI2021-123543OB-C21.en
dc.format.mimetypeapplication/pdf
dc.language.isoenges
dc.publisherMDPIen
dc.relation.ispartofJournal of Marine Science and Engineering. 2022, V. 10, n. 11, 1769en
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectWind energyen
dc.subjectFloating wind turbineen
dc.subjectPitch controlen
dc.subjectFuzzy logicen
dc.subjectStructural fatigueen
dc.subject.otherIngeniería mecánicaes
dc.subject.otherMechanical engineeringen
dc.titleHybrid Optimized Fuzzy Pitch Controller of a Floating Wind Turbine with Fatigue Analysisen
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.relation.publisherversionhttps://doi.org/10.3390/jmse10111769es
dc.identifier.doi10.3390/jmse10111769
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094902-B-C21/ES/ANALISIS Y CONTROL DE UN DISPOSITIVO FLOTANTE HIBRIDO DE ENERGIA EOLICA Y MARINA/es
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica, Técnica y de Innovación 2021-2023/PDI2021-123543OB-C21/es
dc.identifier.essn2077-1312
dc.journal.titleJournal of Marine Science and Engineeringen
dc.volume.number10es
dc.issue.number11es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record