Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7966
Título
An Efficient Discrete Model to Approximate the Solutions of a Nonlinear Double-Fractional Two-Component Gross–Pitaevskii-Type System
Publicado en
Mathematics. 2021, V. 9, n. 21, 2727
Editorial
MDPI
Fecha de publicación
2021-10
DOI
10.3390/math9212727
Résumé
In this work, we introduce and theoretically analyze a relatively simple numerical algorithm
to solve a double-fractional condensate model. The mathematical system is a generalization of
the famous Gross–Pitaevskii equation, which is a model consisting of two nonlinear complexvalued diffusive differential equations. The continuous model studied in this manuscript is a
multidimensional system that includes Riesz-type spatial fractional derivatives. We prove here the
relevant features of the numerical algorithm, and illustrative simulations will be shown to verify the
quadratic order of convergence in both the space and time variables.
Palabras clave
Fractional Bose-Einstein model
Double-fractional system
Fully dicrete model
Stability and convergence analysis
Materia
Matemáticas
Mathematics
Versión del editor
Aparece en las colecciones