Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/8080
Título
Avoiding order reduction when integrating reaction–diffusion boundary value problems with exponential splitting methods
Publicado en
Journal of Computational and Applied Mathematics. 2019, V. 357, p. 228-250
Editorial
Elsevier
Fecha de publicación
2019-09
ISSN
0377-0427
DOI
10.1016/j.cam.2019.02.023
Abstract
In this paper, we suggest a technique to avoid order reduction in time when integrating reaction–diffusion boundary value problems under non-homogeneous boundary conditions with exponential splitting methods. More precisely, we consider Lie–Trotter and Strang splitting methods and Dirichlet, Neumann and Robin boundary conditions. Beginning from an abstract framework in Banach spaces, a thorough error analysis after full discretization is performed and some numerical results are shown which corroborate the theoretical results.
Palabras clave
Exponential splitting
Order reduction
Initial boundary value problem
Materia
Matemáticas
Mathematics
Versión del editor
Collections
Documento(s) sujeto(s) a una licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional