Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contattaci
  • Manda Feedback
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto RIUBUArchivi & CollezioniData di pubblicazioneAutoriTitoliSoggettiQuesta CollezioneData di pubblicazioneAutoriTitoliSoggetti

    My Account

    LoginRegistrazione

    Statistiche

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Artículos GICAP
    • Mostra Item
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Artículos GICAP
    • Mostra Item

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/8247

    Título
    Imputation of Missing Values Affecting the Software Performance of Component-based Robots
    Autor
    Basurto Hornillos, NuñoAutoridad UBU Orcid
    Arroyo Puente, ÁngelAutoridad UBU Orcid
    Cambra Baseca, CarlosAutoridad UBU Orcid
    Herrero Cosío, ÁlvaroAutoridad UBU Orcid
    Publicado en
    Computers & Electrical Engineering. 2020, V. 87, 106766
    Editorial
    Elsevier
    Fecha de publicación
    2020-10
    ISSN
    0045-7906
    DOI
    10.1016/j.compeleceng.2020.106766
    Abstract
    Intelligent robots are foreseen as a technology that would be soon present in most public and private environments. In order to increase the trust of humans, robotic systems must be reliable while both response and down times are minimized. In keeping with this idea, present paper proposes the application of machine learning (regression models more precisely) to preprocess data in order to improve the detection of failures. Such failures deeply a ect the performance of the software components embedded in human-interacting robots. To address one of the most common problems of real-life datasets (missing values), some traditional (such as linear regression) as well as innovative (decision tree and neural network) models are applied. The aim is to impute missing values with minimum error in order to improve the quality of data and consequently maximize the failure-detection rate. Experiments are run on a public and up-to-date dataset and the obtained results support the viability of the proposed models.
    Palabras clave
    Software component
    Intelligent robots
    Anomaly detection
    Missing values
    Supervised learning
    Regresion
    Materia
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/8247
    Versión del editor
    https://doi.org/10.1016/j.compeleceng.2020.106766
    Aparece en las colecciones
    • Artículos GICAP
    Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Files in questo item
    Nombre:
    Basurto-cee_2020.pdf
    Tamaño:
    334.8Kb
    Formato:
    Adobe PDF
    Thumbnail
    Mostra/Apri

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostra tutti i dati dell'item