Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contact Us
  • Send Feedback
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of RIUBUCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Compartir

    View Item 
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Artículos GICAP
    • View Item
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Artículos GICAP
    • View Item

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/8248

    Título
    A hybrid machine learning system to impute and classify a component-based robot
    Autor
    Basurto Hornillos, NuñoUBU authority Orcid
    Arroyo Puente, ÁngelUBU authority Orcid
    Cambra Baseca, CarlosUBU authority Orcid
    Herrero Cosío, ÁlvaroUBU authority Orcid
    Publicado en
    Logic Journal of the IGPL. 2023, V. 31, n. 2, p. 338-351
    Editorial
    Oxford University Press
    Fecha de publicación
    2022-02
    ISSN
    1367-0751
    DOI
    10.1093/jigpal/jzac023
    Abstract
    In the field of cybernetic systems and more specifically in robotics, one of the fundamental objectives is the detection of anomalies in order to minimize loss of time. Following this idea, this paper proposes the implementation of a Hybrid Intelligent System in four steps to impute the missing values, by combining clustering and regression techniques, followed by balancing and classification tasks. This system applies regression models to each one of the clusters built on the instances of data set. Subsequently, a variety of balancing techniques are applied to improve the classifier’s ability to discern whether it is in an error or a normal state. These techniques support to obtain better classification ratios in which a robot is close to error and allow us to bring the behavior back to a normal state. The experimentation is performed using a modern and public data set, which has been extracted from a component-based robotic system, in which different anomalies are induced by software in their components.
    Palabras clave
    Hybrid Artificial Intelligence System
    Machine learning
    Clustering
    Regression
    Missing values
    Component-Based Robot
    Materia
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/8248
    Versión del editor
    https://doi.org/10.1093/jigpal/jzac023
    Collections
    • Artículos GICAP
    Files in this item
    Nombre:
    Basurto-ljigpl_2023.pdf
    Tamaño:
    463.2Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Show full item record