Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contattaci
  • Manda Feedback
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto RIUBUArchivi & CollezioniData di pubblicazioneAutoriTitoliSoggettiQuesta CollezioneData di pubblicazioneAutoriTitoliSoggetti

    My Account

    LoginRegistrazione

    Statistiche

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Untitled
    • Mostra Item
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Untitled
    • Mostra Item

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/8288

    Título
    Assessment and Modeling of the Influence of Age, Gender, and Family History of Hearing Problems on the Probability of Suffering Hearing Loss in the Working Population
    Autor
    Barrero Ahedo, Jesús P.Autoridad UBU Orcid
    López Perea, Eva MaríaAutoridad UBU Orcid
    Herrera, Sixto
    Mariscal Saldaña, Miguel ÁngelAutoridad UBU Orcid
    García Herrero, SusanaAutoridad UBU Orcid
    Publicado en
    International Journal of Environmental Research and Public Health. 2020, V. 7, n. 21, 8041
    Editorial
    MDPI
    Fecha de publicación
    2020-11
    ISSN
    1661-7827
    DOI
    10.3390/ijerph17218041
    Abstract
    Hearing loss affects hundreds of millions of people all over the world, leading to several types of disabilities, ranging from purely physical to psychological and/or social aspects. A proper analysis to ascertain the main risk factors is essential in order to diagnose early and treat adequately. An exploratory analysis based on a heterogeneous sample of 1418 workers is presented in order to identify the main trigger factors for hearing loss. On the one hand, we recorded several medical and environmental parameters, and on the other, we created a model based on Bayesian networks in order to be able to infer the probability of hearing loss considering different scenarios. This paper focuses on three parameters: gender, age, and a family history of hearing problems. The results obtained allow us to infer or predict the best or worst auditory level for an individual under several different scenarios. The least relevant factor is the existence of a family history of deafness, followed by the gender factor, which slopes considerably toward better hearing for females, and most prominent of all, the age factor, given the large differences identified between the various age groups when the gender and family history of deafness variables remain constant.
    Palabras clave
    Hearing loss
    Bayesian network
    Gender
    Age
    Family history
    Materia
    Salud pública
    Public health
    Organización del trabajo
    Methods engineering
    URI
    http://hdl.handle.net/10259/8288
    Versión del editor
    https://doi.org/10.3390/ijerph17218041
    Aparece en las colecciones
    • Untitled
    • Untitled
    • Untitled
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Files in questo item
    Nombre:
    Barrero-ijerph_2020.pdf
    Tamaño:
    1.246Mb
    Formato:
    Adobe PDF
    Thumbnail
    Mostra/Apri

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostra tutti i dati dell'item