Zur Kurzanzeige

dc.contributor.authorCheca Cruz, David 
dc.contributor.authorUrbikain Pelayo, Gorka
dc.contributor.authorBeranoagirre, Aitor
dc.contributor.authorBustillo Iglesias, Andrés 
dc.contributor.authorLópez de Lacalle, Luis N.
dc.date.accessioned2024-01-16T13:22:16Z
dc.date.available2024-01-16T13:22:16Z
dc.date.issued2022-01
dc.identifier.issn0951-192X
dc.identifier.urihttp://hdl.handle.net/10259/8355
dc.description.abstractThe selection of a proper cutting tool in machining operations is a critical issue. Tool geometric parameters are essential for milling performance. However, the process engineer has very limited experience of the best parameter combination, due to the high cost of cutting tool tests. The same holds true for bachelor studies on machining processes. This study proposes a new strategy that combines experimental tests, machine-learning modelling and Virtual Reality visualization to overcome these limitations. First, tools with different geometric parameters are tested. Second, the experimental data are modeled with different machine-learning techniques (regression trees, multilayer perceptrons, bagging and random forest ensembles). An in-depth analysis of the influence of each input on model accuracy is performed to reduce experimental costs. The results show that the best model with no cutting-force inputs performed worse than the best model with all the inputs. Third, the most accurate model is used to build 3D graphs of special interest to engineering students as well as process engineers, for the optimization of power consumption under different cutting conditions. Finally, a Virtual Reality environment is presented to train engineering students in the study of the best tool design and cutting parameter optimization.en
dc.description.sponsorshipThis investigation was partially supported by Projects Grua-RV and ACIS (Reference Number INVESTUN/18/0002 and INVESTUN/21/0002) of the Consejería de Empleo e Industria of the Junta de Castilla y León, co-financed through European Union FEDER funds, by project SMART-EASY project (Reference Number IDI-20191008) funded by the Spanish Centro para el Desarrollo Tecnológico e Industrial (CDTI), by Project Smart-Label (Reference Number PID2020-119894GB-I00) and project PDC2021-121792-I00, both funded by the Spanish Ministry of Science and Innovation and by Project Elkatek KK-2021/00003 funded by the Basque Government.en
dc.format.mimetypeapplication/pdf
dc.language.isoenges
dc.publisherTaylor & Francisen
dc.relation.ispartofInternational Journal of Computer Integrated Manufacturing. 2022, V. 35, n. 9, p. 951-971es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMultiplayer perceptronen
dc.subjectVirtual realityen
dc.subjectSerrated cuttersen
dc.subjectEnergy optimizationen
dc.subjectEnsemblesen
dc.subject.otherInformáticaes
dc.subject.otherComputer scienceen
dc.subject.otherTecnologíaes
dc.subject.otherTechnologyen
dc.titleUsing Machine-Learning techniques and Virtual Reality to design cutting tools for energy optimization in milling operationsen
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.relation.publisherversionhttps://doi.org/10.1080/0951192X.2022.2027020es
dc.identifier.doi10.1080/0951192X.2022.2027020
dc.identifier.essn1362-3052
dc.journal.titleInternational Journal of Computer Integrated Manufacturingen
dc.volume.number35es
dc.issue.number9es
dc.page.initial951es
dc.page.final971es
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige