Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contact Us
  • Send Feedback
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of RIUBUCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Compartir

    View Item 
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Artículos GICAP
    • View Item
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Artículos GICAP
    • View Item

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/8358

    Título
    Improving the detection of robot anomalies by handling data irregularities
    Autor
    Basurto Hornillos, NuñoUBU authority Orcid
    Cambra Baseca, CarlosUBU authority Orcid
    Herrero Cosío, ÁlvaroUBU authority Orcid
    Publicado en
    Neurocomputing. 2021, V. 459, p. 419-431
    Editorial
    Elsevier
    Fecha de publicación
    2021
    ISSN
    0925-2312
    DOI
    10.1016/j.neucom.2020.05.101
    Abstract
    The ever-increasing complexity of robots causes failures of them as a side effect. Successful detection of anomalies in robotic systems is a key issue in order to improve their maintenance and consequently reducing economic costs and downtime. Going one step further in the detection of anomalies in robots, different mechanisms to deal with data irregularities are proposed and validated in present paper in order to increase detection rates. More precisely, strategies to overcome missing values and class imbalance are considered as complementary tools to get better one-class classification results. The effect of such strategies is evaluated through cross-validation when applying a standard supervised learning model, the Support Vector Machine. Experiments are run on an up-to-date and public dataset that contains some examples of different software anomalies that the middleware of the robot under analysis may experience.
    Palabras clave
    Component-based robot
    Missing values
    Data balancing
    Anomaly detection
    Supervised learning
    Support Vector Machine
    Materia
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/8358
    Versión del editor
    https://doi.org/10.1016/j.neucom.2020.05.101
    Collections
    • Artículos GICAP
    Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Files in this item
    Nombre:
    Basurto-neurocomputing_2021.pdf
    Tamaño:
    234.7Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Show full item record