Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/8477
Título
Design of hybrids for the minimum sum-of-squares clustering problem
Publicado en
Computational Statistics & Data Analysis. 2003, V. 43, n. 2, p. 235-248
Editorial
Elsevier
Fecha de publicación
2003-06
ISSN
0167-9473
DOI
10.1016/S0167-9473(02)00224-4
Abstract
A series of metaheuristic algorithms is proposed and analyzed for the non-hierarchical clustering problem under the criterion of minimum sum-of-squares clustering. These algorithms incorporate genetic operators and local search and tabu search procedures. The aim is to obtain quality solutions with short computation times. A series of computational experiments has been performed. The proposed algorithms obtain better results than previously reported methods, especially with a small number of clusters.
Palabras clave
Clusterization
Metaheuristics
Tabu search
Genetic algorithms
Memetic algorithms
Hybrid algorithms
Materia
Estadística matemática
Mathematical statistics
Versión del editor
Collections