Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/8572
Título
Genetic Algorithms to Simplify Prognosis of Endocarditis
Autor
Publicado en
Intelligent Data Engineering and Automated Learning -- IDEAL 2011, p. 454–462
Editorial
Springer
Fecha de publicación
2011
ISBN
978-3-642-23878-9
DOI
10.1007/978-3-642-23878-9_54
Descripción
Trabajo presentado en: 12th International Conference, Norwich, UK, September 7-9, 2011. Proceedings
Abstract
This ongoing interdisciplinary research is based on the application of genetic algorithms to simplify the process of predicting the mortality of a critical illness called endocarditis. The goal is to determine the most relevant features (symptoms) of patients (samples) observed by doctors to predict the possible mortality once the patient is in treatment of bacterial endocarditis. This can help doctors to prognose the illness in early stages; by helping them to identify in advance possible solutions in order to aid the patient recover faster. The results obtained using a real data set, show that using only the features selected by employing a genetic algorithm from each patient’s case can predict with a quite high accuracy the most probable evolution of the patient.
Palabras clave
Genetic algorithms
Support vector machine
Infective endocarditis
Feature selection algorithm
Imperialist competitive algorithm
Materia
Informática
Computer science
Medicina
Medicine
Versión del editor
Files in questo item
Tamaño:
187.6Kb
Formato:
Adobe PDF