Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Kontakt
  • Feedback abschicken
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereiche & SammlungenErscheinungsdatumAutorenTitelnSchlagwortenDiese SammlungErscheinungsdatumAutorenTitelnSchlagworten

    Mein Benutzerkonto

    EinloggenRegistrieren

    Statistiken

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   RIUBU Startseite
    • E-Prints
    • Untitled
    • Untitled
    • Artículos GICAP
    • Dokumentanzeige
    •   RIUBU Startseite
    • E-Prints
    • Untitled
    • Untitled
    • Artículos GICAP
    • Dokumentanzeige

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/8583

    Título
    A soft computing method for detecting lifetime building thermal insulation failures
    Autor
    Sedano, Javier
    Curiel Herrera, Leticia ElenaAutoridad UBU Orcid
    Corchado, EmilioAutoridad UBU Orcid
    Cal, Enrique de la
    Villar, José Ramón
    Publicado en
    Integrated Computer-Aided Engineering. 2010, V. 17, n. 2, p. 103-115
    Editorial
    IOS Press
    Fecha de publicación
    2010-04
    ISSN
    1069-2509
    DOI
    10.3233/ICA-2010-0337
    Zusammenfassung
    The detection of thermal insulation failures in buildings in operation responds to the challenge of improving building energy efficiency. This multidisciplinary study presents a novel four-step soft computing knowledge identification model called IKBIS to perform thermal insulation failure detection. It proposes the use of Exploratory Projection Pursuit methods to study the relation between input and output variables and data dimensionality reduction. It also applies system identification theory and neural networks for modeling the thermal dynamics of the building. Finally, the novel model is used to predict dynamic thermal biases, and two real cases of study as part of its empirical validation.
    Materia
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/8583
    Versión del editor
    https://content.iospress.com/articles/integrated-computer-aided-engineering/ica00337
    Aparece en las colecciones
    • Artículos GICAP
    Dateien zu dieser Ressource
    Nombre:
    Sedano-icae_2010.pdf
    Tamaño:
    1.312Mb
    Formato:
    Adobe PDF
    Descripción:
    Archivo cerrado
    Öffnen

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Zur Langanzeige