Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/8780
Título
Parkinson’s Disease Severity at 3 Years Can Be Predicted from Non-Motor Symptoms at Baseline
Autor
Publicado en
Frontiers in Neurology. 2017, V. 8
Editorial
Frontiers Media
Fecha de publicación
2017-10
DOI
10.3389/fneur.2017.00551
Resumo
Objective: The aim of this study is to present a predictive model of Parkinson’s disease (PD) global severity, measured with the Clinical Impression of Severity Index for Parkinson’s Disease (CISI-PD).
Methods: This is an observational, longitudinal study with annual follow-up assessments over 3 years (four time points). A multilevel analysis and multiple imputation techniques were performed to generate a predictive model that estimates changes in the CISI-PD at 1, 2, and 3 years.
Results: The clinical state of patients (CISI-PD) significantly worsened in the 3-year follow-up. However, this change was of small magnitude (effect size: 0.44). The following baseline variables were significant predictors of the global severity change: baseline global severity of disease, levodopa equivalent dose, depression and anxiety symptoms, autonomic dysfunction, and cognitive state. The goodness-of-fit of the model was adequate, and the sensitive analysis showed that the data imputation method applied was suitable.
Conclusion: Disease progression depends more on the individual’s baseline characteristics than on the 3-year time period. Results may contribute to a better understanding of the evolution of PD including the non-motor manifestations of the disease.
Palabras clave
Parkinson’s disease
Disease global severity
Predictive model
Multilevel analysis
Multiple imputation
Materia
Sistema nervioso-Enfermedades
Nervous system-Diseases
Neurología
Neurology
Medicina
Medicine
Versión del editor
Aparece en las colecciones