Mostrar el registro sencillo del ítem

dc.contributor.authorDíaz Portugal, Andrés 
dc.contributor.authorAlegre Calderón, Jesús Manuel 
dc.contributor.authorCuesta Segura, Isidoro Iván 
dc.contributor.authorZhang, Zhiliang
dc.date.accessioned2024-04-12T11:41:54Z
dc.date.available2024-04-12T11:41:54Z
dc.date.issued2024-07
dc.identifier.issn0020-7403
dc.identifier.urihttp://hdl.handle.net/10259/8921
dc.description.abstractHydrogen embrittlement prediction demands a numerical framework coupling a damage model with local hydrogen concentration. The inherent nonlinearity in hydrogen-stress-damage interactions challenges convergence in implicit schemes. To address this limitation, we propose a novel chemical potential-based explicit formulation for simulating hydrogen transport in metals. Our approach exploits a heat transfer analogy, linking mechanical and hydrogen transport via inelastic energy as a heat source. By employing chemical potential rather than lattice concentration, our method eliminates the need for user-defined boundary conditions and hydrostatic stress gradient determination. We integrate a VUMATHT subroutine for diffusion modelling and a VUMAT subroutine for material behaviour, coupling stress and strain rates as a heat source for diffusion. Validating against a classical benchmark, we compare our explicit approach with hydrogen concentration-based methods in ABAQUS Standard and Comsol Multiphysics. Stability conditions are assessed for different mesh sizes and mass scaling densities and the capabilities of our approach are showcased for 3D simulations of notched tensile specimens. Our framework offers a novel and efficient pathway for integrating hydrogen transport with user-defined material behaviour, promising advancements in hydrogen-informed damage models.en
dc.description.sponsorshipThe authors gratefully acknowledge funding from projects PID2021-124768OB-C21 and TED2021-130413B-I00. This work was also supported by the Regional Government of Castilla y León (Junta de Castilla y León) through the project SAFEH2 (BU040P23). This research has received co-funding from the European Commission and the Clean Hydrogen Partnership under Grant Agreement No 101137592. This Partnership receives support from the European Union’s Horizon Europe Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research. A. Díaz wishes to thank the Nanomechanical Lab of NTNU for providing hospitality during his research stay. Zhiliang Zhang wants to acknowledge the financial support from the Research Council of Norway via the Helife project (344297).en
dc.format.mimetypeapplication/pdf
dc.language.isoenges
dc.publisherElsevieren
dc.relation.ispartofInternational Journal of Mechanical Sciences. 2024, V. 273, 109195en
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectHydrogen diffusionen
dc.subjectCoupled mechanical/diffusion modellingen
dc.subjectExplicit time integrationen
dc.subjectABAQUS subroutinesen
dc.subject.otherIngeniería mecánicaes
dc.subject.otherMechanical engineeringen
dc.subject.otherIngeniería civiles
dc.subject.otherCivil engineeringen
dc.subject.otherMaterialeses
dc.subject.otherMaterialsen
dc.subject.otherMateriales de construcciónes
dc.subject.otherBuilding materialsen
dc.titleExplicit implementation of hydrogen transport in metalsen
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.relation.publisherversionhttps://doi.org/10.1016/j.ijmecsci.2024.109195es
dc.identifier.doi10.1016/j.ijmecsci.2024.109195
dc.journal.titleInternational Journal of Mechanical Sciencesen
dc.volume.number273es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en este ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem