Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/8944
Título
Testing of the Integrated Energy Behavior of Sustainable Improved Mortar Panels with Recycled Additives by Means of Energy Simulation
Autor
Publicado en
Sustainability. 2019, V. 11, n. 11, 3117
Editorial
MDPI
Fecha de publicación
2019-06
ISSN
2071-1050
DOI
10.3390/su11113117
Abstract
Present waste management policies aim to reduce waste environmental impacts and improve resources’ efficiency. The use of waste and recycled materials to develop green construction materials are attracting researchers worldwide to develop new solutions addressed to increase the sustainability of buildings. This work presents a study of a new recycled mortar panel from the point of view of its contribution to the sustainability of buildings. Materials from industrial waste, as rigid polyurethane foam and electric arc furnace slags, are used as an additive of prefabricated mortar panels. The new proposed panels must have good thermal behavior with respect to the heat transfer interactions with the outside temperature and relative humidity, when compared to traditional brick or concrete. A test building with two kinds of representative uses, which are both residential and tertiary, and located in three cities of Spain with different climates, will be energy simulated in order to assess the thermal behavior of new construction or refurbished opaque ventilated façades with the new mortar panel. The thermal behavior of the new mortar panels would be studied by means of two energy assessments: (i) the evaluation of the influence of the new mortar panel in the energy demand of the whole building when compared to traditional materials, and (ii) the detailed analysis of the transient inner surface temperature of the space walls when using the new mortar panel. Based on the results obtained from the energy simulations performed, it follows that the thermal behavior of the mortar panel is, at least, equivalent to those of the other two materials, and even better in some aspects.
Palabras clave
Building
Energy efficiency
Recycled material
Sustainability
Materia
Construcción
Building
Electrotecnia
Electrical engineering
Ingeniería mecánica
Mechanical engineering
Versión del editor
Aparece en las colecciones