Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contact Us
  • Send Feedback
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of RIUBUCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Compartir

    View Item 
    •   RIUBU Home
    • E-Prints and Research Data
    • Untitled
    • Untitled
    • Untitled
    • View Item
    •   RIUBU Home
    • E-Prints and Research Data
    • Untitled
    • Untitled
    • Untitled
    • View Item

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/9038

    Título
    The influence of employee training and information on the probability of accident rates
    Autor
    Mariscal Saldaña, Miguel ÁngelUBU authority Orcid
    López Perea, Eva MaríaUBU authority Orcid
    López García, José RamónUBU authority Orcid
    Herrera, Sixto
    García Herrero, SusanaUBU authority Orcid
    Publicado en
    International Journal of Industrial Ergonomics. 2019, V. 72, p. 311-319
    Editorial
    Elsevier
    Fecha de publicación
    2019-07
    ISSN
    0169-8141
    DOI
    10.1016/j.ergon.2019.06.002
    Abstract
    The construction industry is one of the most important socio-economic sectors of the Spanish economy and one of the most affected by workplace accidents. An analysis of the data on accident rates is needed, in order to identify variables related with workplace accidents and to define the measures that need to be taken for their reduction. In this study, an analysis is conducted using Bayesian Networks and data from the 7th National Survey on Working Conditions (VII NSWC), to study the relations between workplace accidents, visiting a doctor for occupational reasons, time in the company/sector, information that workers have on workplace risks in the workplace, and information and training on workplace risks that workers have received over the past two years. The NSWC survey, which is conducted every four years, was administered to 8892 workers, in Spain, in 2011. The values derived from the analysis yield certain implications involving the aforementioned variables and how to reduce the probability of workplace accidents. From among the variables under study, information on workplace risks is the most important, with the probability of suffering an accident in the construction industry doubling when such information is insufficient. In accordance with the results, these implications could also help with decision-making focused on improvements to training and on-the-job information, intended both to prevent and to reduce workplace accidents.
    Materia
    Gestión de empresas
    Industrial management
    Salud
    Health
    URI
    http://hdl.handle.net/10259/9038
    Versión del editor
    https://doi.org/10.1016/j.ergon.2019.06.002
    Collections
    • Untitled
    • Untitled
    • Untitled
    • Untitled
    Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Files in this item
    Nombre:
    Mariscal-ijie_2019.pdf
    Tamaño:
    473.6Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Show full item record