Zur Kurzanzeige

dc.contributor.authorVelasco Arroyo, Blanca 
dc.contributor.authorCuriel Alegre, Sandra 
dc.contributor.authorKhan, Aqib Hassan Ali 
dc.contributor.authorRumbo Lorenzo, Carlos 
dc.contributor.authorPérez Alonso, Daniel
dc.contributor.authorRad Moradillo, Juan Carlos 
dc.contributor.authorDe Wilde, Herwig
dc.contributor.authorPérez de Mora, Alfredo
dc.contributor.authorBarros García, Rocío 
dc.date.accessioned2024-06-19T12:12:49Z
dc.date.available2024-06-19T12:12:49Z
dc.date.issued2024-03-25
dc.identifier.issn1871-6784
dc.identifier.urihttp://hdl.handle.net/10259/9292
dc.description.abstractBetter understanding of macrophyte tolerance under long exposure times in real environmental matrices is crucial for phytoremediation and phytoattenuation strategies for aquatic systems. The metal(loid) attenuation ability of 10 emergent macrophyte species (Carex riparia, Cyperus longus, Cyperus rotundus, Iris pseudacorus, Juncus effusus, Lythrum salicaria, Menta aquatica, Phragmites australis, Scirpus holoschoenus, and Typha angustifolia) was investigated using real groundwater from an industrial site, over a 90-day exposure period. A “phytobial” treatment was included, with 3 plant growth-promoting rhizobacterial strains. Plants exposed to the polluted water generally showed similar or reduced aerial biomass compared to the controls, except for C. riparia. This species, along with M. aquatica, exhibited improved biomass after bioaugmentation. Phytoremediation mechanisms accounted for more than 60% of As, Cd, Cu, Ni, and Pb removal, whilst abiotic mechanisms contributed to ∼80% removal of Fe and Zn. Concentrations of metal(loid)s in the roots were generally between 10–100 times higher than in the aerial parts. The macrophytes in this work can be considered “underground attenuators”, more appropriate for rhizostabilization strategies, especially L. salicaria, M. aquatica, S. holoschoenus, and T. angustifolia. For I. pseudacorus, C. longus, and C. riparia; harvesting the aerial parts could be a complementary phytoextraction approach to further remove Pb and Zn. Of all the plants, S. holoschoenus showed the best balance between biomass production and uptake of multiple metal(loid)s. Results also suggest that multiple phytostrategies may be possible for the same plant depending on the final remedial aim. Phytobial approaches need to be further assessed for each macrophyte species.en
dc.description.sponsorshipThis work has been funded by the GREENER project of the European Union's Horizon 2020 research and innovation program (Grant Agreement No. 826312). S. Curiel-Alegre pre-doctoral contract was funded by Junta de Castilla y León (ORDEN EDU/1508/2020, de 15 de diciembre).en
dc.format.mimetypeapplication/pdf
dc.language.isoenges
dc.publisherElsevieren
dc.relation.ispartofNew Biotechnology. 2024, V. 79, p. 50-59en
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectRhizostabilizationen
dc.subjectEmergent macrophyteen
dc.subjectGroundwateren
dc.subjectMetalen
dc.subjectMetalloiden
dc.subjectPlant growth promoting bacteriaen
dc.subject.otherBiotecnologíaes
dc.subject.otherBiotechnologyen
dc.subject.otherBiología moleculares
dc.subject.otherMolecular biologyen
dc.titlePhytostabilization of metal(loid)s by ten emergent macrophytes following a 90-day exposure to industrially contaminated groundwateren
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.relation.publisherversionhttps://doi.org/10.1016/j.nbt.2023.12.003es
dc.identifier.doi10.1016/j.nbt.2023.12.003
dc.journal.titleNew Biotechnologyen
dc.volume.number79es
dc.page.initial50es
dc.page.final59es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige