Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/9503
Título
Theoretical multiscale study on the properties, aqueous solution behavior and biological impact of zinc oxide nanoparticles
Autor
Publicado en
Surfaces and Interfaces. 2024, V. 46, 103965
Editorial
Elsevier
Fecha de publicación
2024-03
ISSN
2468-0230
DOI
10.1016/j.surfin.2024.103965
Resumo
The aim of this theoretical study is to describe the relationship between the structure and the physicochemical properties of zinc oxide nanoparticles (ZnO NPs) and Mn doped ZnO NPs to assess their toxicological impact. In order to do so, a multiscale modelling approach is applied. Different nanoparticles, as well as the mechanism(s) of nanoparticle aggregation and growing, are characterized in terms of size and shape considering electronic, surface, structural and topological properties via quantum mechanics simulations. To evaluate the toxicology impact of ZnO NPs in human health safety and their possible environmental impact, classical molecular dynamics simulations were carried out to study the interaction between the nanomaterials and biological target systems: a set of selected human proteins and model plasma membranes. Likewise, the simulation of nanoparticles dispersion in aqueous media along with water adsorption on their surfaces was conducted.
The mayor findings may be summarized as: (i) the ZnO NPs from 12 to 96 (ZnO) units are characterized and their interaction energies, HOMO-LUMO gaps, superficial areas and volumes are reported; (ii) the (ZnO)12 NP and Zn11MnO12 NP are further characterized via their topological properties, vibrational spectra, PDOS and non-covalent interactions; (iii) the doping with Mn atoms is favourable. The interaction energies, HOMO-LUMO orbitals and gaps, PDOS, atomic charges, superficial areas and volumes are reported for NPs doped with up to 5 Mn atoms; (iv) high water affinity for ZnO NPs is reported with both quantum and classical calculations, v) (ZnO)12 NPs do not penetrate the cell membrane and (vi) the affinity energy of both ZnO and Mn doped NPs for human proteins is moderate.
The reported results provide in-depth whole-chain studies of zinc oxide nanoparticles, which have been successfully applied for different technologies.
Palabras clave
Zinc oxide
Nanoparticles
Density Functional Theory
Molecular Dynamics
Protein docking
Cell membranes
Materia
Química física
Chemistry, Physical and theoretical
Versión del editor
Aparece en las colecciones
Documento(s) sujeto(s) a una licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional