Mostrar el registro sencillo del ítem
dc.contributor.author | Ahedo García, Virginia | |
dc.contributor.author | Santos Martín, José Ignacio | |
dc.contributor.author | Galán Ordax, José Manuel | |
dc.date.accessioned | 2024-09-02T12:18:32Z | |
dc.date.available | 2024-09-02T12:18:32Z | |
dc.date.issued | 2024-07 | |
dc.identifier.issn | 1132-175X | |
dc.identifier.uri | http://hdl.handle.net/10259/9520 | |
dc.description.abstract | In retailing, the location problem is a fundamental strategic aspect. It is usually formalized as a multi-criteria optimization problem to choose the most appropriate spot. A relevant element in the selection is the adequacy of the commercial ecosystem in the vicinity of the location. To account for this criterion, there are different primary indices based on networks that formalize the quality of the available options with regard to the surrounding ecosystem. Previous research suggests that aggregating the different indices using a classifier can improve the quality of these metrics. In this paper, we compare different classifiers to assess their performance in that respect. The analysis has been performed in a context of transfer knowledge and information fusion using data from all the cities in Castile and Leon, Spain. Our results show that the random forest and generalized linear models obtain results significantly superior to other alternatives. | en |
dc.description.abstract | El problema de la localización en el comercio minorista es un aspecto estratégico fundamental. Suele formalizarse como un problema de optimización multicriterio para elegir la ubicación más adecuada. Un elemento relevante en la selección es la adecuación del ecosistema comercial en las proximidades de la localización. Bajo este criterio, existen diferentes índices primarios basados en redes para formalizar la calidad de las opciones disponibles con respecto al ecosistema circundante. Investigaciones anteriores sugieren que la agregación de los distintos índices mediante un clasificador puede mejorar la calidad de estas métricas. En este artículo, comparamos distintos clasificadores para evaluar su rendimiento. El análisis se ha realizado en un contexto de transferencia de conocimiento y fusión de información utilizando datos de todas las ciudades de Castilla y León, España. Nuestros resultados muestran que el bosque aleatorio y los modelos lineales generalizados obtienen resultados significativamente superiores a otras alternativas. | es |
dc.description.sponsorship | The authors acknowledge financial support from the Spanish Ministry of Science, Innovation and Universities (Excellence Network RED2018‐102518‐T), the Spanish State Research Agency (PID2020-118906GB-I00/AEI/10.13039/501100011033) and the Fundación Bancaria Caixa D. Estalvis I Pensions de Barcelona, La Caixa (2020/00062/001). In addition, we acknowledge support from the Santander Supercomputación group (University of Cantabria), that provided access to the Altamira Supercomputer —located at the Institute of Physics of Cantabria (IFCA-CSIC) and member of the Spanish Supercomputing Network— to perform the different simulations/analyses. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | es |
dc.publisher | ADINGOR | es |
dc.relation.ispartof | Dirección y Organización. 2024, V. 83, p. 5-17 | es |
dc.rights | Atribución-NoComercial-CompartirIgual 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | * |
dc.subject | Complex networks | en |
dc.subject | Retail location problem | en |
dc.subject | Prediction | en |
dc.subject | Knowledge transfer | en |
dc.subject | Classification | en |
dc.subject | Pattern recognition | en |
dc.subject | Redes complejas | es |
dc.subject | Problema de localización de comercios | es |
dc.subject | Predicción | es |
dc.subject | Transferencia de conocimiento | es |
dc.subject | Clasificación | es |
dc.subject | Reconocimiento de patrones | es |
dc.subject.other | Gestión de empresas | es |
dc.subject.other | Industrial management | en |
dc.subject.other | Comercio | es |
dc.subject.other | Commerce | en |
dc.subject.other | Estadística matemática | es |
dc.subject.other | Mathematical statistics | en |
dc.title | Network-based quality index aggregation in the retail location problem. A supervised learning approach | en |
dc.title.alternative | Agregación de índices de calidad basados en redes en el problema de localización de comercios minoristas. Un enfoque desde el aprendizaje supervisado | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.relation.publisherversion | https://doi.org/10.37610/0njk0c03 | es |
dc.identifier.doi | 10.37610/0njk0c03 | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RED2018‐102518‐T/ES/SISTEMAS COMPLEJOS SOCIOTECNOLOGICOS/ | es |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-118906GB-I00/ES/INTERACCIONES DINAMICAS DISTRIBUIDAS: PROTOCOLOS BEST EXPERIENCED PAYOFF Y SEPARACION ENDOGENA/ | es |
dc.relation.projectID | info:eu-repo/grantAgreement/Fundación Bancaria Caixa d'Estalvis i Pensions de Barcelona//2020%2F00062%2F001/ | es |
dc.identifier.essn | 2171-6323 | |
dc.journal.title | Dirección y Organización | es |
dc.page.initial | 5 | es |
dc.page.final | 17 | es |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |