Afficher la notice abrégée

dc.contributor.authorGranados López, Diego 
dc.contributor.authorGarcía Rodríguez, Sol 
dc.contributor.authorGarcía Rodríguez, Ana 
dc.contributor.authorDiez Mediavilla, Montserrat 
dc.contributor.authorAlonso Tristán, Cristina 
dc.date.accessioned2024-11-19T11:27:36Z
dc.date.available2024-11-19T11:27:36Z
dc.date.issued2022
dc.identifier.isbn978-84-09-42477-1
dc.identifier.urihttp://hdl.handle.net/10259/9712
dc.descriptionComunicación presentada en: XII Congreso Nacional y III Internacional de Ingeniería Termodinámica (12 CNIT), June 19- July 1, Madrid (Spain)es
dc.description.abstractThis study evaluated the performance of nine ANNs to estimate the electricity production of a BIPV system from meteorological data that are generally accessible from ground-based meteorological stations. Solar irradiance was proved to be the most adequate input variable to predict PV production with a simple ANN. However, the accuracy of this simple model was notably improved with the inclusion of the temperature and relative humidity. Wind speed and direction were less relevant as their statistical indicators highlighted. Indeed, all reviewed ANN structures shown good performance as the ܴܯܵܧ and ܧܤܯ kept relatively low. Besides, the largest number of neurons does not lead to a better performance.en
dc.description.sponsorshipFinancial support provided by the Spanish Ministry of Science & Innovation (Ref. RTI2018- 098900-B-I00) and PIRTU Program, ORDEN EDU/556/2019, for financial support.es
dc.format.mimetypeapplication/pdf
dc.language.isoenges
dc.relation.ispartofProceedings 12CNIT 2022, p. 63-68es
dc.subjectMachine learningen
dc.subjectANNen
dc.subjectBIPVen
dc.subjectRenewable Energyen
dc.subjectSolar energyen
dc.subject.otherTermodinámicaes
dc.subject.otherThermodynamicsen
dc.subject.otherEnergía solares
dc.subject.otherSolar energyen
dc.titleMachine learning techniques for estimation of BIPV productionen
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée